• Title/Summary/Keyword: adhesive shear

Search Result 582, Processing Time 0.028 seconds

Comparison of bond strengths of ceramic brackets bonded to zirconia surfaces using different zirconia primers and a universal adhesive

  • Lee, Ji-Yeon;Ahn, Jaechan;An, Sang In;Park, Jeong-won
    • Restorative Dentistry and Endodontics
    • /
    • v.43 no.1
    • /
    • pp.7.1-7.7
    • /
    • 2018
  • Objectives: The aim of this study is to compare the shear bond strengths of ceramic brackets bonded to zirconia surfaces using different zirconia primers and universal adhesive. Materials and Methods: Fifty zirconia blocks ($15{\times}15{\times}10mm$, Zpex, Tosoh Corporation) were polished with 1,000 grit sand paper and air-abraded with $50{\mu}m$ $Al_2O_3$ for 10 seconds (40 psi). They were divided into 5 groups: control (CO), Metal/Zirconia primer (MZ, Ivoclar Vivadent), Z-PRIME Plus (ZP, Bisco), Zirconia Liner (ZL, Sun Medical), and Scotchbond Universal adhesive (SU, 3M ESPE). Transbond XT Primer (used for CO, MZ, ZP, and ZL) and Transbond XT Paste was used for bracket bonding (Gemini clear ceramic brackets, 3M Unitek). After 24 hours at $37^{\circ}C$ storage, specimens underwent 2,000 thermocycles, and then, shear bond strengths were measured (1 mm/min). An adhesive remnant index (ARI) score was calculated. The data were analyzed using one-way analysis of variance and the Bonferroni test (p = 0.05). Results: Surface treatment with primers resulted in increased shear bond strength. The SU group showed the highest shear bond strength followed by the ZP, ZL, MZ, and CO groups, in that order. The median ARI scores were as follows: CO = 0, MZ = 0, ZP = 0, ZL = 0, and SU = 3 (p < 0.05). Conclusions: Within this experiment, zirconia primer can increase the shear bond strength of bracket bonding. The highest shear bond strength is observed in SU group, even when no primer is used.

INFLUENCE OF MULTIPLE ADHESIVE COATINGS ON THE SHEAR BONDING STRENGTH OF COMPOSITE RESIN (접착제의 다층적용이 복합레진의 전단결합강도에 미치는 영향)

  • Park, Heon-Dong;Lee, Chang-Seop;Lee, Sang-Ho;Lee, Nan-Young
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.33 no.3
    • /
    • pp.377-387
    • /
    • 2006
  • The objective of this study was to evaluate the influence of multiple adhesive coatings on the thickness of hybrid and adhesive layer and shear bond strength(SBS) of self-etch adhesives and self-etch primer adhesives. The buccal or lingual crown dentin of extracted human molars was used. Self-etch adhesives or self-etch primer adhesives were applied 1, 2 and 3 times on the dentin before light curing. In another group adhesives were reapplied after light curing first layer. Treated surfaces were prepared to measure the thickness of hybrid and adhesive layer with SEM, and shear bond strength to dentin using an Instron machine. The following results were obtained : 1. The adhesive layers increased with the number of coatings(p<0.05) with all adhesives. Adpor Prompt L-Pop and Xeno III were significantly thinner than self-etch primer adhesives (p<0.05). 2. The thickness of hybrid layers increased with the number of coatings (p<0.05). 3. The shear bonding strength of Unifil Bond and Clearfill SE Bond were higher than Scotchbond Multipurpose Plus and Adpor Prompt L-Pop (p<0.05), and similar with Xeno III. 4. The shear bond strength increased significantly with the number of coatings in Adpor Prompt L-Pop(p<0.05), but decreased at 3 times in AdheSE Bond(p>0.05). 5. In Adpor Prompt L-Pop and Xeno III, the shear bond strength decreased when adhesives were reapplied after curing the first adhesive layer.

  • PDF

Change in shear bond strength of orthodontic brackets using self-etching primer according to adhesive types and saliva contamination (Self-etching primer를 사용하여 교정용 브라켓 접착 시 접착제와 타액오염에 따른 전단결합강도 변화)

  • Nam, Eun-Hye;Yoon, Young-Ah;Kim, Il-Kyu
    • The korean journal of orthodontics
    • /
    • v.35 no.6 s.113
    • /
    • pp.433-442
    • /
    • 2005
  • The purpose of this study was to evaluate and compare the shear bond strength of orthodontic brackets depending on the variety of adhesives and whether saliva exists, by using self-etching primer (SEP). Groups were divided according to the type of adhesive into resin adhesive (Trans bond XT) and resin-modified glass ionomer cement (Fuji Ortho LC). One group of resin adhesive used XT primer after etching with 37% phosphoric acid, and the other group used self-etching primer. One group of resin-modified glass ionomer cement only used etching for bonding, and the other group used SEP. Each of the groups were also classified by whether saliva was contaminated or not. and then the shear bond strength was measured. The results showed that when using resin adhesive, the shear bond strength of SEP was lower than the XT primer. In the resin-modified glass ionomer cement groups, the shear bond strength which depends on the priming method, did not have a meaningful difference statistically When saliva was contaminated, the group which used SEP, regardless of the adhesive variety, had a greater shear bond strength than the normal priming group. From these results, SEP showed a shear bond strength that is possible to be used clinically, regardless of the adhesive variety. It can especially be clinically useful to use SEP to bond brackets even on tooth surfaces contaminated with saliva, because it offers the appropriate bonding strength as well as shorter treatment time and easy application.

A Study on Cyclic Bending Load of Bus Folding Door Pillar including Adhesive Bonding and Spot Welding (접착제 접합과 점용접된 버스 폴딩도어 필러의 굽힘피로강도 평가에 관한 연구)

  • Yoon Ho-Chel
    • Journal of Welding and Joining
    • /
    • v.24 no.3
    • /
    • pp.55-59
    • /
    • 2006
  • This paper is concerned with a study on cyclic bending load of bus folding door pillar including adhesive bonding and spot welding. Three specimen types were used such as spot welding, I-type adhesive bonding and M-type adhesive bonding in this study. The tensile-shear tests were carried out to evaluate the tensile-shear strength of these three specimen types. Also four-point bending tests were carried out to evaluate the static and dynamic bending load. From the results, using adhesive bonding has a better effect on the static and dynamic bending load than using spot welding. Therefore, manufacturing better structural products can be expected by applying hybrid welding using adhesive and spot welding to those.

Influence of the Adhesive, the Adherend and the Overlap on the Single Lap Shear Strength

  • da Silva, Lucas F.M.;Ramos, J.E.;Figueiredo, M.V.;Strohaecker, T.R.
    • Journal of Adhesion and Interface
    • /
    • v.7 no.4
    • /
    • pp.1-9
    • /
    • 2006
  • The single lap joint is the most studied joint in the literature in terms of both theory and practice. It is easy to manufacture and the lap shear strength is a useful value for strength assessment and quality control. Simple design rules exist such as the one present in standard ASTM 1002 or in a recent paper by Adams and Davies. The main factors that have an influence on the lap shear strength are the type of adhesive, i.e. ductile or brittle, the adherend yield strength and the overlap length. The overlap increases the shear strength almost linearly if the adhesive is sufficiently ductile and the adherend does not yield. For substrates that yield, a plateau is reached for a certain value of overlap corresponding to the yielding of the adherend. For intermediate or brittle adhesives, the analysis is more complex and needs further investigation. In order to quantify the influence of the adhesive, the adherend and the overlap on the lap shear strength, the experimental design technique of Taguchi was used. An experimental matrix of 27 tests was designed and each test was repeated three times. The influence of each variable could be assessed as well as the interactions between them using the statistical software Statview. The results show that the most important variable on the lap shear strength is the overlap length followed by the type of adherend.

  • PDF

A Study on Bracket-Adhesive Combinations in Aspect of Shear Bond Strength and Bond Failure (전단접착강도와 탈락양상을 고려한 브라켓-접착제의 선택)

  • Han, Jae-Ik;Son, Woo-Sung
    • The korean journal of orthodontics
    • /
    • v.28 no.6 s.71
    • /
    • pp.955-974
    • /
    • 1998
  • The purpose of the present study was to seek bracket-adhesive combinations which have adequate bond strength with no enamel and bracket fracture. The shear bond strengths were measured, the sites of failure and the enamel damage were investigated and the peripheral sealing and adaptation between enamel surface, bonding adhesive and bracket were evaluated. 240 noncarious human premolars were divided into twenty four groups of ten teeth. Shear bond strengths of each group were determined in an universal testing machine after two days passed and the debonded specimens were inspected to determine the predominant bond failure sites. To evaluate peripheral sealing and adaption between enamel surface, adhesive and bracket, each specimen was cut longitudinally into two halves which included the midsection of the bracket, adhesive and enamel and exmined in scanning electron microscope. Six different types of brackets were bonded to the tooth with four different type of adhesives. Six different types of brackets were Image, Plastic, Crystaline, Fascination, Transcend 2000 and metal bracket and four different adhesives were No-mix, Light-Bond, OrthoLC and Superbond C&B. From this study, it may be concluded that (1) The mean shear bond strength varied from a high of 36.58 Kg (410.07 Kg/$cm^2$) with the Fascination-Light Bond combination group to a low of 8.93 Kg (75.51 Kg/$cm^2$) with theImage-OrthoLC combination group. When using OrthoLC as adhesive, the mean shear bond strength was significantly lower than that of other combination groups, (2) Regardless of adhesives, the mean shear bond strength of Fascination brackets was relatively high whereas Plastic and Image brackets had low shear bonding strength. The shear bond strength of Crystaline bracket and Transcend 2m was relatively equal to or lower than that of metal bracket, (3) There was a correlation between bond strength, enamel damage and bracket fracture. As the shear bond strength was increased, the rate of enamel damage and bracket fracture were increased, (4) The combination groups that use OrthoLC as adhesive were debonded in shear stress without enamel fracture and bracket fracture, whereas the combination groups that use Superbond C&B as adhesive experienced a relative high enamel fracture rate and bracket fracture rate, (5) Peripheral sealing and adaptation between enamel-adhesive-bracket were relatively good when using Light-Bond or No-mix as adhesive. Regardless of adhesives, adaptation between bracket-adhesive were relatively good in Ceramic brackets, (6) The combination groups which had adequate bonding strength with no enamel and bracket fracture were Crystaline-No mix, Crystaline-Light Bond, Crystaline-OrthoLC, metal-No mix, metal-Light Bond and metal-OrthoLC combination groups.

  • PDF

Elastic analysis effect of adhesive layer characteristics in steel beam strengthened with a fiber-reinforced polymer plates

  • Daouadji, Tahar Hassaine;Hadji, Lazreg;Meziane, Mohamed Ait Amar;Bekki, Hadj
    • Structural Engineering and Mechanics
    • /
    • v.59 no.1
    • /
    • pp.83-100
    • /
    • 2016
  • In this paper, the problem of interfacial stresses in steel beams strengthened with a fiber reinforced polymer plates is analyzed using linear elastic theory. The analysis is based on the deformation compatibility approach developed by Tounsi (2006) where both the shear and normal stresses are assumed to be invariant across the adhesive layer thickness. The analysis provides efficient calculations for both shear and normal interfacial stresses in steel beams strengthened with composite plates, and accounts for various effects of Poisson's ratio and Young's modulus of adhesive. Such interfacial stresses play a fundamental role in the mechanics of plated beams, because they can produce a sudden and premature failure. The analysis is based on equilibrium and deformations compatibility approach developed by Tounsi (2006). In the present theoretical analysis, the adherend shear deformations are taken into account by assuming a parabolic shear stress through the thickness of both the steel beam and bonded plate. The paper is concluded with a summary and recommendations for the design of the strengthened beam.

Experimental examination for effect of voids on bonding performance in cryogenic temperature condition (내부 기공이 극저온에서 접착강도에 미치는 영향에 대한 실험적 고찰)

  • Shon, Min-Young;Kim, Jong-Ho;Kim, Jong-Hak
    • Composites Research
    • /
    • v.22 no.2
    • /
    • pp.14-17
    • /
    • 2009
  • Adhesive joints are widely used for structural joining applications in various fields and environmental conditions. Polyurethane adhesive is using for LNG carrier with cryogenic temperature condition. In industrial application of polyurethane adhesive, void of adhesive layer is often discussed regarding its effects on bonding properties. In present study, artificial void were prepared on Polyurethane adhesive layer with various size and location. The single lap shear test was carried out by using prepared specimens under $-170^{\circ}C$. As a result, it was confirm that the void of adhesive layer didn't affect the adhesion properties independent of their size and location.

Improved analytical solution for slip and interfacial stress in composite steel-concrete beam bonded with an adhesive

  • Tayeb, Bensatallah;Daouadji, Tahar Hassaine
    • Advances in materials Research
    • /
    • v.9 no.2
    • /
    • pp.133-153
    • /
    • 2020
  • In this paper, an improved theoretical interfacial stress and slip analysis is presented for simply supported composite steel-concrete beam bonded with an adhesive. The adherend shear deformations have been included in the present theoretical analyses by assuming a linear shear stress through the thickness of the adherends, while all existing solutions neglect this effect. Remarkable effect of shear deformations of elements has been noted in the results. It is observed that large shear is concentrated and slip at the edges of the composite steel-concrete. Comparing with some experimental results from references, analytical advantage of this improvement is possible to determine the normal and shear stress to estimate exact prediction of normal and shear stress interfacial along span between concrete and steel beam. The exact prediction of these stresses will be very important to make an accurate analysis of the mode of fracture. It is shown that both the normal and shear stresses at the interface are influenced by the material and geometry parameters of the composite steel-concrete beam. This research is helpful for the understanding on mechanical behavior of the connection and design of such structures.

Effect of Spew fillet on Failure Strength Evaluation in Adhesive Bonded Joints involving Natural Fiber Reinforced Composites (접착제 접합된 자연섬유강화 복합재료의 파괴강도 특성에 미치는 접착제 필릿의 영향)

  • Kim, Yeon-Jik;Yun, Ho-Cheol;Im, Jae-Gyu
    • Proceedings of the KWS Conference
    • /
    • 2005.06a
    • /
    • pp.262-264
    • /
    • 2005
  • This paper is concerned with a fracture strength study of composite adhesive lap joints. The tests were carried out on specimen joints manufactured hybrid stacked joints such as the polyester and bamboo natural fiber layer. The main objective of the work was to test the fracture strength using hybrid fiber composites with a polyester and bamboo natural fiber layer adjacent to the spew fillet of adhesive bonded joints and hybrid stacked joints. The results are presented using tensile-shear strength graph and finite element analysis. The failure mechanisms are discussed in order to explain that spew fillet at the end of the overlap reduces greatly the adhesive shear and effects the tensile-shear strength in hybrid stacked joints.

  • PDF