• Title/Summary/Keyword: adhesive layer

Search Result 543, Processing Time 0.028 seconds

A Study on the Estimation of Adhesive Stability According to Organic.lnorganic Mixed Tile Bond Type for Application of Polishing Tile to Dry Wall System (건식벽체에 폴리싱타일을 적용하기 위한 유기.무기질 혼합계 타일접착제 종류에 따른 부착안정성 평가에 관한 연구)

  • Oh, Sang-Keun;Lee, Gi-Jang;Yoo, Jae-Kang;Kim, Su-Ryun;Lee, Sung-Il
    • Journal of the Korea Institute of Building Construction
    • /
    • v.2 no.3
    • /
    • pp.163-170
    • /
    • 2002
  • Recently, polishing tile(porcelain homogeneous polished tile) was used in the construction field as a finishing material. But, there happened some problems such as tile exfoliation by construction condition in early ages. Also, for use of polishing tile in the dry wall system which used to lightweight wall, the examination of adhesive stability of polishing tile is needed. In this study, adhesive strength of Polishing tile was investigated by tile bond types on gypsum board and non asbestos board coated by tar-urethane and Polymer modified cementitious waterproofing membrane(Series I). Then, the effect of heat stress and vibration was estimated on gypsum and non asbestos board(Series II). As the result of study are the follows; (1) Polishing tile(600$\times$400mm) construction on waterproofing layer : Both laboratory estimation and spot examination sieve were happened that fall of tile because their hardening speed is late. (2) To using powder style adhesives in the dry wail with waterproofing layer : Adhesive strength of tile is Influenced by interface bond area and base side condition. (3) Shock and heat stresses : obvious decline of adhesive strength is not happened

Comparative Ultrastructures of the Fertilized Egg Envelopes in Golden severum, Convic cichlid and Discus, Cichlidae, Teleost (경골어류 시클리드과 Golden severum, Convic cichlid 및 Discus의 수정란 난막 미세구조 비교)

  • Deung, Young-Kun;Reu, Dong-Suck;Kim, Dong-Heui
    • Applied Microscopy
    • /
    • v.27 no.4
    • /
    • pp.417-432
    • /
    • 1997
  • The structures of the fertilized egg envelope in three species of cichlidae, golden severum (Cichlasoma severum var.), convic cichlid (Cichlasoma nigrofasciatum) and discus (Symphysodon aequifasciatus) were investigated by routine light and electron microscopies. The fertilized eggs of all three species were of the non-transparent, ellipsoidal, adhesive and non-floted type. The egg envelopes have a single micropyle, which is thought to the pathway of sperm in the area of the animal pole. In golden severum, an outer surface of egg envelope was covered by a reticular layer, that of convic cichlid was covered by an amorphous reticular layer and that of discus was covered by a branched reticular layer. The fertilized egg envelopes consisted of two distinct layers, an adhesive outer layer and an inner layer, consisted of lamellae alternating with interlamellae of lower electron density, in all three species; an inner layer of golden severum was $15\sim17$ layers, that of convic cichlid was $14\sim16$ layers, and that of discus was $18\sim19$ layers.

  • PDF

Homogenization of Plastic Behavior of Metallic Particle/Epoxy Composite Adhesive for Cold Spray Deposition (저온 분사 공정을 위한 금속입자/에폭시 복합재료 접착제의 소성 거동의 균질화 기법 연구)

  • Yong-Jun Cho;Jae-An Jeon;Kinal Kim;Po-Lun Feng;Steven Nutt;Sang-Eui Lee
    • Composites Research
    • /
    • v.36 no.3
    • /
    • pp.199-204
    • /
    • 2023
  • A combination of a metallic mesh and an adhesive layer of metallic particle/epoxy composite was introduced as an intermediate layer to enhance the adhesion between cold-sprayed particles and fiber-reinforced composites (FRCs). Aluminum was considered for both the metallic particles in the adhesive and the metallic mesh. To predict the mechanical characteristics of the intermediate bond layer under a high strain rate, the properties of the adhesive layer needed to be calculated or measured. Therefore, in this study, the Al particle/epoxy adhesive was homogenized by using a rule of mixture. To verify the homogenization, the penetration depth, and the thickness decrease after the cold spray deposition from the undeformed surface, was monitored with FE analysis and compared with experimental observation. The comparison displayed that the penetration depth was comparable to the diameters of one cold spray particle, and thus the homogenization approach can be reasonable for the prediction of the stress level of particulate polymer composite interlayer under a high strain rate for cold spray processing.

The effect of a diode laser and traditional irrigants on the bond strength of self-adhesive cement

  • Tuncdemir, Ali Riza;Yildirim, Cihan;Ozcan, Erhan;Polat, Serdar
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.4
    • /
    • pp.457-463
    • /
    • 2013
  • PURPOSE. The purpose of this study was to compare the effect of a diode laser and traditional irrigants on the bond strength of self-adhesive cement. MATERIALS AND METHODS. Fifty-five incisors extracted due to periodontal problems were used. All teeth were instrumented using a set of rotary root canal instruments. The post spaces were enlarged for a No.14 (diameter, 1.4 mm) Snowlight (Abrasive technology, OH, USA) glass fiber reinforced composite post with matching drill. The teeth were randomly divided into 5 experimental groups of 11 teeth each. The post spaces were treated with the followings: Group 1: 5 mL 0.9% physiological saline; Group 2: 5 mL 5.25% sodium hypochlorite; Group 3: 5 mL 17% ethylene diamine tetra acetic acid (EDTA), Group 4: 37% orthophosphoric acid and Group 5: Photodynamic diode laser irradiation for 1 minute after application of light-active dye solution. Snowlight posts were luted with self-adhesive resin cement. Each root was sectioned perpendicular to its long axis to create 1 mm thick specimens. The push-out bond strength test method was used to measure bond strength. One tooth from each group was processed for scanning electron microscopic analysis. RESULTS. Bond strength values were as follow: Group 1 = 4.15 MPa; Group 2 = 3.00 MPa; Group 3 = 4.45 MPa; Group 4 = 6.96 MPa; and Group 5 = 8.93 MPa. These values were analysed using one-way ANOVA and Tukey honestly significant difference test (P<.05). Significantly higher bond strength values were obtained with the diode laser and orthophosphoric acid (P<.05). There were no differences found between the other groups (P> .05). CONCLUSION. Orthophosphoric acid and EDTA were more effective methods for removing the smear layer than the diode laser. However, the diode laser and orthophosphoric acid were more effective at the cement dentin interface than the EDTA, Therefore, modifying the smear layer may be more effective when a self-adhesive system is used.

EFFECT OF FLUORIDE APPLICATION ON DENTIN BONDING (불소도포가 상아질 접착에 미치는 영향)

  • Kwon, Hyoung-Jo;Park, Jin-Hoon;Cho, Kyeu-Zeung
    • Restorative Dentistry and Endodontics
    • /
    • v.20 no.1
    • /
    • pp.113-128
    • /
    • 1995
  • The purpose of this study was to investigate the effect of stannous fluoride on the dentin bonding with three kinds of commercially available dentin bonding systems containing different adhesive monomers. Dentin specimens with exposed labial dentin prepared from freshly extracted bovine mandibular anterior teeth were divided into experimental and control groups. The specimens of experimental groups were bonded with dentin bonding systems and composite resins including All bond 2 ㅡ& Bisfil, Scotchbond Multi-Purpose & Z100, and Denthesive II Charisma after 2 % stannous& fluorided application for S minutes and washing for 1 minute. The specimens of control groups were bonded with the same dentin bonding systems and composite resins as used in the experimental groups. After bonded specimens were stored in $37^{\circ}C$ distilled water for 24 hours, the tensile bond strength and cohesive failure rate were measured, and then the pretreated dentin surfaces and the fractured dentin surfaces were examined under scanning electron microscope. The results were as follows : Mean bond strength of stannous fluoride applied groups of All bond 2, Scotchbond MP, and Denthesive II were 2.5MPa, 1.1MPa, and 1.1MPa respectively, and those of control groups were 7.5MPa, 8.1MPa, and 4.6MPa. Bond strength values of stannous fluoride applied groups were significantly lower than those of the control groups(p<0.05). SEM findings of dentin surfaces after stannous fluoride application demonstrated an appearance of partially remained smear layer and smear plugs inspite of pretreatment with 10 % phosphoric aicd or maleic acid solution, and an appearance of smear layer covered surface under Denthesive II priming. But those of control groups commonly showed clean dentin surfaces without smear layer and smear plugs. On SEM observation of the fractured dentin-resin interface, while most of the specimens of stannous fluoride applied groups showed adhesive failure mode, those of All bond 2 and Scotchbond MP control groups showed mainly adhesive-cohesive mixed failure mode, and mainly adhesive failure mode in Denthesive II control group.

  • PDF

Optimized Synthesis Conditions of Polyethersulfone Support Layer for Enhanced Water Flux for Thin Film Composite Membrane

  • Son, Moon;Choi, Hyeongyu;Liu, Lei;Park, Hosik;Choi, Heechul
    • Environmental Engineering Research
    • /
    • v.19 no.4
    • /
    • pp.339-344
    • /
    • 2014
  • Different types of polyethersulfone (PES) support layer for a thin film composite (TFC) membrane were synthesized under various synthesis conditions using the phase inversion method to study the combined effects of substrate, adhesive, and pore former. The permeability, selectivity, pore structure, and morphology of the prepared membranes were analyzed to evaluate the membrane performance. The combined use of substrate, adhesive, and pore former produced a thinner dense top layer, with more straight finger-like pores. The pure water permeation (PWP) of the optimized PES membrane was $27.42L/m^2hr$ (LMH), whereas that of bare PES membrane was 3.24 LMH. Moreover, membrane selectivity, represented as divalent ion ($CaSO_4$) rejection, was not sacrificed under the synthesis conditions, which produced the dramatically enhanced PWP. The high permeability and selectivity of the PES membrane produced under the optimized synthesis conditions suggest that it can be utilized as a potential support layer for TFC membranes.

Structure of Oocyte Surface in Two Korean Minnow Species, Rhynchocypris kumgangensis and R. oxycephalus (Pisces: Cyprinidae) (금강모치와 버들치 난모세포의 표피 구조)

  • Gwak, Jin-Young;Park, Jong-Young
    • Korean Journal of Ichthyology
    • /
    • v.19 no.1
    • /
    • pp.16-23
    • /
    • 2007
  • Oocyte surface in two Korean minnows, Rhynchocypris oxycephalus and R. kumgangensis was examined by light and electron microscope. In two species, the development of the oocyte was similar, but the follicular layer surrounding full-grown oocyte showed an evident difference. In R. oxycephalus, the follicular layer at the yolk vesicle stage became bilaminar with the retention of its outer squamous cell layer and the acquisition of an inner cuboidal or round cell layer just over the zona radiata. As the oocyte grows, the cuboidal cells of the inner follicular layer began to be replaced by columnar cells. At the yolk granule stage, the columnar cells secreted mucin to their cytoplasm (adhesive materials) and then surround the entire oocyte, as bundles of fence-shaped structures. Whereas, although the follicular layer of R. kumgangensis had an outer squamous layer and an inner cuboidal or round cell layer at the yolk vesicles as in R. oxycephalus, no inner cells were more changed with the retention of its cuboidal or round cells. Finally, in R. kumgangensis, the adhesive materials did not occur. In Korean two minnows, the structural difference in the oocyte surface seems to be related to their habitats and spawning characteristics as well as taxonomic characters.

Effect of Degree of Interfacial Interlinking on Adhesive Strength and Fracture Morphology of Rubber Layers (고무층간 가교정도가 접착강도 및 파괴형태에 미치는 영향)

  • Kim, Hyeon-Jae;Kaang, Shin-Young;Nah, Chang-Woon
    • Elastomers and Composites
    • /
    • v.34 no.1
    • /
    • pp.31-44
    • /
    • 1999
  • Interfacial adhesive strength between the fully-crosslinked and partially-crosslinked rubber layers were Investigated at the temperature range of $30{\sim}120^{\circ}C$ for four different rubbers(NR, SBR, EPDM, BIMS). The surfaces of interfacial failure were also investigated using a scanning electron microscopy(SEM). The physical interlinking played a major role in the adhesive strength between the fully-crosslinked rubber layers. When a partially-crosslinked rubber layer was bonded to the fully-crosslinked one, the chemical as well as the physical interlinking affected the adhesive strength. NR showed a "interfacial knotty tearing" pattern, while EPDM showed a typical "cross-hatched" one when the adhesive strength approached to the cohesive tear strength of each material.

  • PDF

Failure Load Prediction of the Composite Adhesive Joint Using the Damage Zone Ratio (파손영역비를 이용한 복합재 접착 체결부의 파손강도 예측)

  • Lee, Young-Hwan;Ban, Chang-Su;Choi, Jin-Ho;Kweon, Jin-Hwe
    • Composites Research
    • /
    • v.21 no.4
    • /
    • pp.22-28
    • /
    • 2008
  • The composite joint has become an important research area because the structural efficiency of a structure with a joint is determined by its joints rather than by its basic structure since the joints are often the weakest areas in composite structures. In this paper, the strengths of adhesive joints consisting of metal and composites were predicted and tested by the maximum strain theory and damage zone theory. Nonlinear finite element analyses of adhesive Joints considering the material nonlinearity of the adhesive layer were performed. From the tests and analyses, the strengths of the adhesive joints could be predicted to within 22.2% using the damage zone ratio.

Surface Preparation and Activation Only by Abrasion and Its Effect on Adhesion Strength

  • Ali Gursel;Salih Yildiz
    • Journal of Adhesion and Interface
    • /
    • v.23 no.4
    • /
    • pp.101-107
    • /
    • 2022
  • Adhesive joints have many advantages such as weight savings, corrosion and fatigue resistance and now developed even withstand of high impact and dynamic loads. However, an adhesion has cumbersome and complicated surface preparation processes. The surface preparation step is critical in adhesive joint manufacturing in order to obtain the prescribed strength for adhesive joints. In this study, it was attempted to simplify and reduce the number of surface preparation steps, and abrasion and rapid adhesive application (ARAA) process is developed for an alternative solution. The abrasion processes are performed only for creating surface roughness in standard procedures (SP), although the abrasion processes cause surface activation itself. The results showed that there is no need the long procedures in laboratory or chemical agents for adhesion. After the abrasion process, the attracted and highly reactive fresh surface layer obtained, and its effect on bonding success is observed and analyzed in this research, in light of the essential physic and adhesion theories. Al 6061 aluminum adherends and epoxy-based adhesives were chosen for bonding processes, which is mostly used in light vehicle parts. The adherends were cleaned, treated and activated only with abrasion, and after the adhesive application the specimens were tested under quasi-static loading. The satisfied ARAA results were compared with that of the specimens fabricated by the standard procedure (SP) of adhesion processes of high impact loads.