• Title/Summary/Keyword: adhesive film

Search Result 306, Processing Time 0.029 seconds

AN EXPERIMENTAL STUDY ON THE FILM THICKNESS OF RESIN LUTING CEMENTS (치과용 레진 시멘트의 피막도에 관한 실험적 연구)

  • Cho Kook-Hyeon;Song Chang-Yong;Song Kwang-Yeob;Park Chan-Woon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.32 no.2
    • /
    • pp.212-224
    • /
    • 1994
  • The purpose of this study was to evaluate and compare film thickness of five kinds of resin luting cements [Comspan, Panavia Ex, Maryland bridge adhesive, All-bond C & B cementation kit, and Super-bond C & B]. Zinc-phosphate cement and glass-ionomer cement were used as the control group. In order to measure the film thickness the methods used were in broad compliance with ADA Specification No. 8, a tapered-die system that simulates clinical conditions more closely, and the connected tapered-die system that simulates bridge conditions. The inorganic filler size of resin cements was also examined with scanning electron micrographs. The results were obtained as follows ; 1. The film thickness of resin cements was increased in the order of Comspan, Panavia Ex, Super-bond C & B, Maryland bridge adhesive, and All-bond C & B cementation kit. Maryland bridge adhesive and All-bond C & B cementation kit showed significantly higher film thickness than the control group(p<0.01). 2. For all resin cements, there was a significant difference of film thickness between the ADA method and the tapered-die system. Generally, the tapered-die system demonstrated lower film thickness than the ADA method(p<0.01). 3. There was no significant difference in film thickness between the tapered-die system and the tapered-die bridge system in all resin cements(p<0.01). 4. The scanning electron microscope showed that the cement with larger filler had a tendency to be higher in film thickness.

  • PDF

Energy Efficiency Improvement of Vanadium Redox Flow Battery by Integrating Electrode and Bipolar Plate

  • Kim, Min-Young;Kang, Byeong-Su;Park, Sang-Jun;Lim, Jinsub;Hong, Youngsun;Han, Jong-Hun;Kim, Ho-Sung
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.330-338
    • /
    • 2021
  • An integral electrode-bipolar plate assembly, which is composed of electrode, conductive adhesive film (CAF) and bipolar plate, has been developed and evaluated for application with a vanadium redox flow battery (VRB) to decrease contact resistance between electrode and bipolar plate. The CAF, made of EVA (ethylene-vinyl-acetate) material with carbon black or CNT (Carbon Nano Tube), is applied between the electrode and the bipolar plate to enable an integral assembly by adhesion. In order to evaluate the integral assembly of VRB by adhesive film, the resistivity of integral assembly and the performance of single cell were investigated. Thus, it was verified that the integral assembly is applicable to redox flow battery. Through resistance and contact resistance of bare EVA and CAF films on bipolar plate were changed. Among the adhesive films, CAF film coated with carbon black showed the lowest value in through resistance, and CAF film coated with CNT showed the lowest value in contact resistance, respectively. The efficiency of VRB single cell was improved by applying CAF films coated with carbon black and CNT, resulting in the reduced overvoltage in charging process. Therefore, the energy efficiency of both CAF films, about 84%, were improved than that of blank cell, about 79.5 % under current density at 40 mA cm-2. The energy efficiency of the two cells were similar, but carbon black coated CAF improved the coulomb efficiency and CNT coated CAF improved the voltage efficiency, respectively.

Synthesis of Silane Group Modified Polyurethane Acrylate and Analysis of Its UV-curing Property (실란기가 도입된 폴리우레탄 아크릴레이트 합성 및 자외선 경화 특성 분석)

  • Kim, Jung Soo
    • Journal of Adhesion and Interface
    • /
    • v.22 no.3
    • /
    • pp.98-105
    • /
    • 2021
  • In this study, we prepared a silver nanoparticle transferable adhesive composition with transparency and adhesive properties using UV-curable urethane acrylate containing silane groups. The urethane-based adhesive composition was applied between the Ag/PET film in which silver nanoparticles were patterned on PET and the PC film to be transferred. Immediately after UV-curing with UV, PET was removed to complete the manufacture of Ag/PC film. UV-curable urethane acrylate containing silane groups was synthesized using polycaprolactone diol (PCL), isophrone diisocyanate (IPDI), 2-hydroxyethyl methacrylate (HEMA), and (3-aminopropyl) triethoxysilane (APTES). The silane group of APTES can improve interfacial adhesion by reacting with the specially treated silver nanoparticle surface of the Ag/PET film. In addition, we improved the adhesion between silver nanoparticle and PC film by mixing UV-curable urethane acrylate containing a silane group and a functional acrylic diluent used as a diluent. We analyzed the synthesis process of urethane acrylate using FT-IR, and compared the adhesive properties, optical properties, and transfer properties according to the molar ratio of APTES and the acrylic diluent composition. As a result, the best transfer properties were confirmed in the adhesive composition prepared under the conditions of PUA2S1_0.5.

Enhanced Adhesion of Cu Film on the Aluminum Oxide by Applying an Ion-beam-mixd Al Seed Layar

  • Kim, Hyeong-Jin;Park, Jae-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.229-229
    • /
    • 2012
  • Adhesion of Copper film on the aluminum oxide layer formed by anodizing an aluminum plate was enhanced by applying ion beam mixing method. Forming an conductive metal layer on the insulating oxide surface without using adhesive epoxy bonds provide metal-PCB(Printed Circuit Board) better thermal conductivities, which are crucial for high power electric device working condition. IBM (Ion beam mixing) process consists of 3 steps; a preliminary deposition of an film, ion beam bombardment, and additional deposition of film with a proper thickness for the application. For the deposition of the films, e-beam evaporation method was used and 70 KeV N-ions were applied for the ion beam bombardment in this work. Adhesions of the interfaces measured by the adhesive tape test and the pull-off test showed an enhancement with the aid of IBM and the adhesion of the ion-beam-mixed films were commercially acceptable. The mixing feature of the atoms near the interface was studied by scanning electron microscopy, Auger electron spectroscopy, and X-ray photoelectron spectroscopy.

  • PDF

Adhesion Performance Change of Positive-side Installed Rubber Asphalt Waterproof Sheet Integrated with Water-Soluble Film in Accordance to Wetness Condition (수용성 필름이 일체화된 역타설 고무 아스팔트 방수시트의 콘크리트 타설시 가수 여부에 따른 부착성능 변화 연구)

  • An, Ki-Won;Kang, Hyo-Jin;Kim, Chun-Hag;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.229-230
    • /
    • 2019
  • Integrated water-soluble film is dissolved in the rubber asphalt waterproof sheet to secure adhesive strength on freshly cast concrete on the adhesion side of waterproofing layer on the floor slab. In addition, in order to determine whether the water in the concrete slurry can dissolve the water-soluble film sufficiently, the adhesive strength of the waterproofing sheet was compared between difference wetness condition at the upper part of the concrete specimen before the concrete casting.

  • PDF

A Study on Synthesis of Acrylic Pressure Sensitive Adhesive for Polarizer Film by Solution Polymerization (용액중합에 의한 편광필름용 아크릴 점착제의 합성에 관한 연구)

  • Lim, Chang-Hyuk;Jung, Young-Jae;Cho, Ur-Ryong
    • Elastomers and Composites
    • /
    • v.44 no.2
    • /
    • pp.175-181
    • /
    • 2009
  • The solution polymerization was conducted to synthesize pressure sensitive adhesive for polarizer film using acrylic monomers. 2-Ethylhexyl acrylate, butyl acrylate, acrylic acid were used as acrylic monomers, benzoyl peroxide as initiator, ethyl acetate as solvent. The ratio of monomers was 2-ethylhexyl acrylate: butyl acrylate: acrylic acid = 25:50:3.6 reflecting $-40^{\circ}C$ of glass transition temperature in the pressure sensitive adhesive. The amount of initiator was determined as 0.09% to monomer considering wetting power and initial tackiness. The ratio of monomer to solvent was determined as 1:1.7 considering wetting power and transmissivity. The transmissivity of pressure sensitive adhesive increased with decreasing both viscosity and molecular weight due to reducing of refractive index by low entanglement between molecules. In the measurement of pot life, it was found that the storage stability was good at 1:1.7 of monomer: solvent without large change of viscosity during 200 min.

Development of a scratch tester using a two-component force sensor (2축 힘센서를 이용한 스크레치 테스트 개발)

  • 김종호;박연규;이호영;박강식;오희근
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1018-1021
    • /
    • 2003
  • A scratch tester was developed to evaluate the adhesive strength at interface between thin film and substrate(silicon wafer). Under force control, the scratch tester can measure the normal and the horizontal forces simultaneously as the probe tip of the equipment approaches to the interface between thin film and substrate of wafer. The capacity of each component of force sensor is 0.1 N ∼ 100 N. In addition, the tester can detect the signal of elastic wave from AE sensor(frequency range of 900 kHz) attached to the probe tip and evaluate the bonding strength of interface. Using the developed scratch tester. the feasibility test was performed to evaluate the adhesive strength of semiconductor wafer.

  • PDF

Study in the Mechanisms of Formation of Transfer Film under the Condition of Wear of Steel AISI1020 by Natural Rubber

  • Wang, De-Guo;Zhang, Si-Wei;He, Ren-Yang;Li, Ming-Yuan
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.223-224
    • /
    • 2002
  • The mechanisms of formation of transfer film under the condition of wear of Steel AISI1020 by natural rubber were investigated. The transfer film was observed and the formation mechanisms were clarified. The formation process of transfer film on the worn surface of the steel could be divided into two stages. Firstly, the adhesive layer emerged on the worn surface of the steel by adhesion of natural rubber. in which the macromolecular chains of natural rubber joined to the surface of the steel by Van der Waals' force. And then, the iron atom and metal oxide reacted with the macromolecular of natural rubber in the adhesive layer and produced Fe-polymer compound. As a result, the transfer film was formed on the worn surface of the steel. The transfer film was joined to the worn surface of the steel by the chemical bonds and electrostatic force.

  • PDF