• Title/Summary/Keyword: adhesion test

Search Result 1,107, Processing Time 0.03 seconds

Development of Low-Cost High-Performance Antibacterial Tempered Glass (저비용 고기능성 항균강화유리 개발을 위한 연구)

  • Kim, Jun-Sub
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.562-567
    • /
    • 2021
  • To develop an antibacterial tempered glass for applications to various building facilities and household products, the antibacterial activity of domestic materials was investigated, and a tempered glass sample was produced with silver, copper, and zinc, having an antibacterial activity of 99% or more at a specific concentration. The measured antibacterial activity of the samples, in which silver, copper, and zinc were dispersed in ethylene glycol + glycerol, was more than 99%. Measurements of the thickness of the coated metal material by washing using a surface analyzer showed that the thickness decreased by less than 1% in various types of detergents, including water, but only approximately 10% in the alkaline detergents. To check the human safety of the samples, a cytotoxicity test was performed through an MTT assay; the samples showed no cytotoxicity. Finally, a Live/Dead kit or film adhesion method showed that the antibacterial activity of the prototype was more than 99%. Therefore, the high-functional antibacterial effect of tempered glass was developed using domestic materials and may be used in various products in the future.

Development of Amorphous Iron Based Coating Layer using High-velocity Oxygen Fuel (HVOF) Spraying (철계 비정질 분말을 활용한 초고속 용사 코팅층 개발)

  • Kim, Jungjoon;Kim, Song-Yi;Lee, Jong-Jae;Lee, Seok-Jae;Lim, Hyunkyu;Lee, Min-Ha;Kim, Hwi-Jun;Choi, Hyunjoo
    • Journal of Powder Materials
    • /
    • v.28 no.6
    • /
    • pp.483-490
    • /
    • 2021
  • A new Fe-Cr-Mo-B-C amorphous alloy is designed, which offers high mechanical strength, corrosion resistance as well as high glass-forming ability and its gas-atomized amorphous powder is deposited on an ASTM A213-T91 steel substrate using the high-velocity oxygen fuel (HVOF) process. The hybrid coating layer, consisting of nanocrystalline and amorphous phases, exhibits strong bonding features with the substrate, without revealing significant pore formation. By the coating process, it is possible to obtain a dense structure in which pores are hardly observed not only inside the coating layer but also at the interface between the coating layer and the substrate. The coating layer exhibits good adhesive strength as well as good wear resistance, making it suitable for coating layers for biomass applications.

Physicochemical, Antibacterial Properties, and Compatibility of ZnO-NP/Chitosan/β-Glycerophosphate Composite Hydrogels

  • Huang, Pingping;Su, Wen;Han, Rui;Lin, Hao;Yang, Jing;Xu, Libin;Ma, Lei
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.4
    • /
    • pp.522-530
    • /
    • 2022
  • In this study we aimed to develop novel ZnO-NP/chitosan/β-glycerophosphate (ZnO-NP/CS/β-GP) antibacterial hydrogels for biomedical applications. According to the mass fraction ratio of ZnO-NPs to chitosan, mixtures of 1, 3, and 5% ZnO-NPs/CS/β-GP were prepared. Using the test-tube inversion method, scanning electron microscopy and Fourier-transform infrared spectroscopy, the influence of ZnO-NPs on gelation time, chemical composition, and cross-sectional microstructures were evaluated. Adding ZnO-NPs significantly improved the hydrogel's antibacterial activity as determined by bacteriostatic zone and colony counting. The hydrogel's bacteriostatic mechanism was investigated using live/dead fluorescent staining and scanning electron microscopy. In addition, crystal violet staining and MTT assay demonstrated that ZnO-NPs/CS/β-GP exhibited good antibacterial activity in inhibiting the formation of biofilms and eradicating existing biofilms. CCK-8 and live/dead cell staining methods revealed that the cell viability of gingival fibroblasts (L929) cocultured with hydrogel in each group was above 90% after 24, 48, and 72 h. These results suggest that ZnO-NPs improve the temperature sensitivity and bacteriostatic performance of chitosan/β-glycerophosphate (CS/β-GP), which could be injected into the periodontal pocket in solution form and quickly transformed into hydrogel adhesion on the gingiva, allowing for a straightforward and convenient procedure. In conclusion, ZnO-NP/CS/β-GP thermosensitive hydrogels could be expected to be utilized as adjuvant drugs for clinical prevention and treatment of peri-implant inflammation.

Shear Performance Evaluation of Composite Thermal Insulation with Quasi-Non-Combustible according to Adhesive Type (부착 유형에 따른 준불연 복합단열판 전단성능평가)

  • Choi, Ki-Sun;Oh, Keunyeong;Park, Keum-Sung;Ha, Soo-Kyung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.5
    • /
    • pp.507-518
    • /
    • 2022
  • The purpose of this research is to obtain experimental data for developing a structural design of an external insulation system by evaluating the shear performance of a composite insulation system according to the adhesive type. The shear performance of the composite insulation system was experimentally evaluated by considering a simultaneous placement method, full and spot/edge coverage using adhesive mortar. As a result of the test, the shear strength of simultaneous placement and full coverage method was almost similar, the spot/edge coverage method was about 80% of them. Also, the simultaneous placement method is considered to be constructively advantageous when applied as an external insulation system to a high-rise building compared to using an adhesive mortar.

Rotator cuff repair with or without proximal end detachment for long head of the biceps tendon tenodesis

  • Mardani-Kivi, Mohsen;Asadi, Kamran;Izadi, Amin;Leili, Ehsan Kazemnejad
    • Clinics in Shoulder and Elbow
    • /
    • v.25 no.2
    • /
    • pp.101-105
    • /
    • 2022
  • Background: Rotator cuff tears cause pathologies of the long head of the biceps tendon (LHBT). One of the surgical treatments for such a tear is LHBT tenodesis to the humerus. This study aims to compare simultaneous rotator cuff repair and LHBT tenodesis with or without detachment of the proximal end of the LHBT (PELHBT) from its site of adhesion to the glenoid. Methods: This retrospective study involved patients affected by LHBT pathology with rotator cuff tear. The patients were divided into two groups, with or without PELHBT detachment from the glenoid. Therapeutic outcomes were investigated by evaluation of patient satisfaction, pain based on visual analog scale, shoulder function based on Constant score and simple shoulder test, and biceps muscle strength based on the manual muscle testing grading system before surgery, at 6 months, and at the final visit after surgery. Results: Groups 1 and 2 comprised 23 and 26 patients, respectively, who showed no significant differences in demographic characteristics (p>0.05). Shoulder function, biceps muscle strength, pain, and satisfaction rate improved over time (p<0.05) but were not significantly different between the two groups (p>0.05). No post-surgical complication was found in either group. Conclusions: There was no difference in final outcomes of tenodesis with or without detachment of the PELHBT from the supraglenoid tubercle. Such tendon detachment is not necessary.

Adhesive Strength and Interface Characterization of CF/PEKK Composites with PEEK, PEI Adhesives Using High Temperature oven Welding Process (고온 오븐 접합을 적용한 PEEK, PEI 기반 CF/PEKK 복합재의 접착 강도 및 계면 특성 평가)

  • Park, Seong-Jae;Lee, Kyo-Moon;Park, Soo-Jeong;Kim, Yun-Hae
    • Composites Research
    • /
    • v.35 no.2
    • /
    • pp.86-92
    • /
    • 2022
  • This study was conducted to determine the effect of molecular formation of adhesive on interface characterization of thermoplastic composites. Carbonfiber/polyetherketoneketone (CF/PEKK) thermoplastic composites were fusion bonded and PEEK, PEI adhesive bonded using a high-temperature oven welding process. In addition, lap shear strength test and fracture surface analysis using a digital optical microscope and a scanning electron microscope (SEM), and Fourier transform infrared spectroscopy (FTIR) were performed. As a result, the adhesive bonding method improved adhesion strength with interphase having increased molecular formation of ether groups, ketone groups, and imide groups which mainly constitutes the CF/PEKK and adhesives. Furthermore, it was found that the use of PEEK containing more ether groups and ketone groups forms a more strongly bonded interphase and enhances the adhesive force of the CF/PEKK composites.

A Study on the Crack Response and Waterproof Properties of High-Functional Water-Based Acrylic Paints for Exterior Walls (고기능성 외벽용 수성 아크릴계 도료의 균열 대응성 및 방수 특성 평가 연구)

  • Kim, Yong-Ro;Ko, Hyo-Jin;Park, Jin-Sang;Kim, Dong-Bum;Lee, Sang-Wook
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.6
    • /
    • pp.593-604
    • /
    • 2021
  • In this study, a comparative test was conducted on a specially developed elastic waterproof paint and general water-based paint for the purpose of responding to cracks occurring on the outer wall of concrete structures and improving watertightness. Through the comparative experiment, it was confirmed that the watertightness could be improved by securing the crack shielding property, and it was also confirmed that about 10 times more crack responsiveness was secured compared to general water-based paint. In addition, it was confirmed that the adhesion performance of at least 1.3MPa and resistance to a water permeation pressure of 0.1MPa were possible, confirming that stability was secured from a waterproofing perspective.

Hard TiN Coating by Magnetron-ICP P $I^3$D

  • Nikiforov, S.A.;Kim, G.H.;Rim, G.H.;Urm, K.W.;Lee, S.H.
    • Journal of the Korean institute of surface engineering
    • /
    • v.34 no.5
    • /
    • pp.414-420
    • /
    • 2001
  • A 30-kV plasma immersion ion implantation setup (P $I^3$) has been equipped with a self-developed 6'-magnetron to perform hard coatings with enhanced adhesion by P $I^3$D(P $I^3$ assisted deposition) process. Using ICP source with immersed Ti antenna and reactive magnetron sputtering of Ti target in $N_2$/Ar ambient gas mixture, the TiN films were prepared on Si substrates at different pulse bias and ion-to-atom arrival ratio ( $J_{i}$ $J_{Me}$ ). Prior to TiN film formation the nitrogen implantation was performed followed by deposition of Ti buffer layer under A $r^{+}$ irradiation. Films grown at $J_{i}$ $J_{Me}$ =0.003 and $V_{pulse}$=-20kV showed columnar grain morphology and (200) preferred orientation while those prepared at $J_{i}$ $J_{Me}$ =0.08 and $V_{pulse}$=-5 kV had dense and eqiaxed structure with (111) and (220) main peaks. X-ray diffraction patterns revealed some amount of $Ti_{x}$ $N_{y}$ in the films. The maximum microhardness of $H_{v}$ =35 GN/ $M^2$ was at the pulse bias of -5 kV. The P $I^3$D technique was applied to enhance wear properties of commercial tools of HSS (SKH51) and WC-Co alloy (P30). The specimens were 25-kV PII nitrogen implanted to the dose 4.10$^{17}$ c $m^{-2}$ and then coated with 4-$\mu\textrm{m}$ TiN film on $Ti_{x}$ $N_{y}$ buffer layer. Wear resistance was compared by measuring weight loss under sliding test (6-mm $Al_2$ $O_3$ counter ball, 500-gf applied load). After 30000 cycles at 500 rpm the untreated P30 specimen lost 3.10$^{-4}$ g, and HSS specimens lost 9.10$^{-4}$ g after 40000 cycles while quite zero losses were demonstrated by TiN coated specimens.s.

  • PDF

Interfacial Properties of Gradient Specimen of CNT-Epoxy Nanocomposites using Micromechanical Technique and Wettability (미세역학적 실험법과 젖음성을 이용한 CNT-에폭시 나노복합재료 경사형 시편의 계면특성)

  • Wang, Zuo-Jia;GnidaKouong, Joel;Park, Joung-Man;Lee, Woo-Il;Park, Jong-Gyu
    • Composites Research
    • /
    • v.22 no.5
    • /
    • pp.8-14
    • /
    • 2009
  • Interfacial evaluation of glass fiber reinforced carbon nanotube (CNT)-epoxy nanocomposite was investigated by micromechanical technique in combination with wettability test. The contact resistance of the CNT-epoxy nanocomposite was measured using a gradient specimen, containing electrical contacts with gradually-increasing spacing. The contact resistance of CNT-epoxy nanocomposites was evaluated by using the two-point method rather than the four-point method. Due to the presence of hydrophobic domains on the heterogeneous surface, the static contact angle of CNT-epoxy nanocomposite was about $120^{\circ}$, which was rather lower than that for super-hydrophobicity. For surface treated-glass fibers, the tensile strength decreased dramatically, whereas the tensile modulus exhibited little change despite the presence of flaws on the etched fiber surface. The interfacial shear strength (IFSS) between the etched glass fiber and the CNT-epoxy nanocomposites increased due to the enhanced surface energy and roughness. As the thermodynamic work of adhesion, $W_a$ increased, both the mechanical IFSS and the apparent modulus increased, which indicated the consistency with each other.

Experimental investigation of blocking mechanism for grouting in water-filled karst conduits

  • Zehua Bu;Zhenhao Xu;Dongdong Pan;Haiyan Li;Jie Liu;Zhaofeng Li
    • Geomechanics and Engineering
    • /
    • v.34 no.2
    • /
    • pp.155-171
    • /
    • 2023
  • Aiming at the grouting treatment of water inflow in karst conduits, a visualized experiment system for conduit-type grouting blocking was developed. Through the improved water supply system and grouting system, and the optimized multisource information monitoring system, the real-time observation of diffusion and deposition of slurry, and the data acquisition of pressure and velocity during the whole process of grouting were realized, which breaks through the problem that the monitoring element is easy to fail due to slurry adhesion in conventional test system. Based on the grouting experiments in static and flowing water, the diffusion and deposition behavior of the quick-setting slurry under different working conditions were analyzed. The temporal and spatial variation behavior of the pressure and velocity were studied, and the blocking mechanism of the grouting were further revealed. The results showed that: (1) Under the flowing water condition, the counter-flow diffusion distance of slurry was negatively correlated with the flow water velocity and the volume ratio of cement and sodium silicate (C-S ratio), and positively correlated with the grouting volume. The slurry deposition thickness was negatively correlated with the flowing water velocity, and positively correlated with the grouting volume and C-S ratio. (2) The pressure increased slowly before blocking of the flowing water and rapidly after blocking in karst conduits. (3) With the continuous progress of grouting, the flowing water velocity decreased slowly first, then significantly, and finally tended to be stable. According to the research results, some engineering recommendations were put forward for the grouting treatment of the conduit-type water inflow disaster, which has been successfully applied in the treatment project of the China Resources Cement (Pingnan) Limestone Mine. This study provided some guidance and reference for the parameter optimization of grouting for the treatment projects of water inflow in karst conduits.