• Title/Summary/Keyword: adequate mathematical models

Search Result 22, Processing Time 0.025 seconds

Compound Learning Curve Model for Semiconductor Manufacturing (반도체에 적합한 복합 학습곡선 모형)

  • Ha, Chung-Hun
    • IE interfaces
    • /
    • v.23 no.3
    • /
    • pp.205-212
    • /
    • 2010
  • The learning curve model is a mathematical form which represents the relationship between the manufacturing experience and its effectiveness. The semiconductor manufacturing is widely known as an appropriate example for the learning effect due to its complicated manufacturing processes. In this paper, I propose a new compound learning curve model for semiconductor products in which the general learning curve model and the growth curve are composed. The dependent variable and the effective independent variables of the model were abstracted from the existing learning curve models and selected according to multiple regression processes. The simulation results using the historical DRAM data show that the proposed compound learning curve model is one of adequate models for describing learning effect of semiconductor products.

회전체 기계전단을 위한 Hybrid 진단 시스템

  • 박홍석;강신현;이재종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.852-855
    • /
    • 1995
  • In modern plant lndustry, dignosis system is an essential implement because a human operator cannot check the state of system all the time. The recent facility needs a computer system which is able to replace and extense the function of the human expert. Checking the state of the plant system, the computer system uses signals form sensors attached to the plant systems. But, It is difficult to predict the cause of the failure from the sensing signals. Because the relationship among the signals cannot be easily represented by mathematical models. So expert system based on a fuzzy rule and Neural network method is sugguested. Expert system decide whether aa state of the system is ordinary of failure by the evaluation of the signals. If the state of the system is unstable, expert system preprocess the signals. When fault is occurred in the machine, the expert system dignoses the state of the system and find the cause as a primary tool. If the expert system dose not find the adequate cause successfully, neural network system uses the preprocessed signals as an input and propose a cause of the failure.

  • PDF

A Shipment Estimation of Agricultural Products Based on Garlic Using Tank Model (탱크모형에 의한 농산물의 출하예측 -마늘을 중심으로-)

  • Suh, Kyo;Lee, Jeong-Jae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.2
    • /
    • pp.35-44
    • /
    • 2005
  • While the need for analyzing and interpreting agricultural logistics are becoming more and more prominent with the rapid changes within the agricultural environment, previously mathematical models have been proved to have its limitations due to the unpredictable traits of agriculture itself and finding the adequate simulation model is not easy. Therefore, in this research, the tank model that has been used to analyze the rainfall-runoff in watersheds, was used to develop a logistics model for estimating shipment by agricultural production. The model was certified by wholesale market data of garlic.

Development of Elementary Teachers' Mathematical Beliefs Scale: A Validity and Reliability Study (초등학교 교사의 수학적 신념 측정도구 개발: 타당성 및 신뢰성 분석)

  • Hwang, Sunghwan
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.24 no.3
    • /
    • pp.259-277
    • /
    • 2020
  • The purpose of this study was to develop and validate a scale of Korean elementary teachers' mathematics beliefs. We examined 299 elementary teachers' mathematical beliefs using 30 items, out of which 12 items covered beliefs about the nature of mathematics and 18 items covered beliefs about mathematics teaching and learning. In the first stage, we performed exploratory factor analysis using 149 survey data to examine the factor structure. In the second stage, we performed confirmatory factor analysis using 150 survey data. Building upon previous studies, we examined the construct validity of three different models to find the best factor structure. The study results indicate that the four-factor model with 14 items provides the best fit for the data: transmissive view of mathematics, constructivist view of mathematics, transmissive view of teaching and learning, and constructivist view of teaching and learning. The findings of the study reveal that each factor has adequate internal consistency and reliability. These results confirm that the beliefs scale is a reliable and valid measurement tool to measure Korean elementary teachers' mathematical beliefs. The implications of the study are discussed.

A STUDY ON THE MODEL-MATCHING CONTROL IN THE LONGITUDINAL AUTONOMOUS DRIVING SYSTEM

  • Kwon, S.J.;Fujioka, T.;Omae, M.;Cho, K.Y.;Suh, M.W.
    • International Journal of Automotive Technology
    • /
    • v.5 no.2
    • /
    • pp.135-144
    • /
    • 2004
  • In this paper, the model-matching control in the longitudinal autonomous driving system is investigated by vehicle dynamics simulation, which contains nonlinear subcomponents and simplified subcomponents. The design of the robust model-matching controller is performed by the characteristics of the 2 degrees of freedom controller, which is composed of the feedforward compensator and the feedback compensator. It makes the characteristics of tractive and brake force to be equivalent to the specific transfer function, which is suggested as the reference model. Mathematical models of vehicle dynamic analysis including the model-matching control are constructed for computer simulation. Then, simple examples on open-loop simulation without any controller and closed loop simulation with the model-matching controller are applied to check the validity of the robust controller. As the practical example, the autonomous driving system in the longitudinal direction is adopted. It is proved that the model-matching control is effective and adequate to the disturbances and the perturbations, which are shown in the responses of the change of a vehicle mass and a road gradient.

Feed Rate Control for the Head-Feed Thresher (수급식탈곡기(穗給式脱穀機)의 공급율(供給率) 제어(制御)(II) -제어시스템 설계 및 시뮬레이션-)

  • Choi, Y.S.;Chung, C.J.
    • Journal of Biosystems Engineering
    • /
    • v.15 no.2
    • /
    • pp.110-122
    • /
    • 1990
  • This study was undertaken to develop the feed rate control system for the head feed thresher by making use of the microprocessor and to evaluate the response of the system to a various threshing conditions. The control unit was composed of one-board microcomputer. The speed of the wet-paddy feeding chain was controlled by dc moter with PI controller. It was used the adaptive control method to maintain the constant feed rate regardless of the fed rice varieties. The sliding type potentiometer was used as the feed rate sensor, which was attached on the sheaf-holding apparatus. The mathematical models of the system components were derived and computer simulation was developed for investigating the parameters affecting on control performance and for estimating the response of the system. A one-board microcomputer-based feed rate control system developed in this study was properly functioned and assessed as adequate for the feed rate control system of the head feed thresher. Based on the simulation for the bundle feed, it was anticipated that the lower setting value of the cylinder speed(RL) is to be set higher than the limiting operational speed. In addition, the higher setting value of the cylinder speed(RH) is to be set lower than the limiting cylinder speed for threshing. The computer simulation for the continuous spread feed showed that the lower the setting value of straw layer thickness(LL) was set, the shorter the correction time. However, if too low LL may be established, the feed rate could not reach to its desired rate.

  • PDF

Analysis of the Heat Transport Capacity of a Axial Grooved Heat Pipe for Solar Collector (태양열 집열기용 히트파이프의 열전달 특성에 대한 해석)

  • Chung, Kyung-Taek;Bae, Chan-Hyo;Suh, Jeong-Se;Kim, Byeong-Gi
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.317-322
    • /
    • 2005
  • This study is aimed to analyze the effects of heat pipe shape on the heat transfer in solar collector with a axial grooved heat pipe. In the design of a heat pipe. two of the most important criteria to be met are the operating temperature range and the maximum heat transport capacity, When the operating temperature range is known and the working fluid has been selected, the maximum heat transport capacity depends strongly on capillary pressure and liquid flow. The heat transport capacity of the heat pipe will depend on the geometry of the heat pipe, the wick structure. the vapor channel shape. groove number. cooling temperature. condenser length and pipe diameter. So various shapes are used for mathematical models of two-phase flow in grooved heat pipe. From the results. the adequate groove shape and scale are presented by considering the heat transport and capillary limitation.

  • PDF

Prediction and analysis of optimal frequency of layered composite structure using higher-order FEM and soft computing techniques

  • Das, Arijit;Hirwani, Chetan K.;Panda, Subrata K.;Topal, Umut;Dede, Tayfun
    • Steel and Composite Structures
    • /
    • v.29 no.6
    • /
    • pp.749-758
    • /
    • 2018
  • This article derived a hybrid coupling technique using the higher-order displacement polynomial and three soft computing techniques (teaching learning-based optimization, particle swarm optimization, and artificial bee colony) to predict the optimal stacking sequence of the layered structure and the corresponding frequency values. The higher-order displacement kinematics is adopted for the mathematical model derivation considering the necessary stress and stain continuity and the elimination of shear correction factor. A nine noded isoparametric Lagrangian element (eighty-one degrees of freedom at each node) is engaged for the discretisation and the desired model equation derived via the classical Hamilton's principle. Subsequently, three soft computing techniques are employed to predict the maximum natural frequency values corresponding to their optimum layer sequences via a suitable home-made computer code. The finite element convergence rate including the optimal solution stability is established through the iterative solutions. Further, the predicted optimal stacking sequence including the accuracy of the frequency values are verified with adequate comparison studies. Lastly, the derived hybrid models are explored further to by solving different numerical examples for the combined structural parameters (length to width ratio, length to thickness ratio and orthotropicity on frequency and layer-sequence) and the implicit behavior discuss in details.

Analysis of Optimal Mixture Ratio for Extrudate of the Soymilk Residue and Corn Grits by Mixture Design (혼합물 실험 계획법에 의한 두유박과 옥분 압출성형물의 최적 혼합비 분석)

  • Han, Gyu-Hong;Kim, Byung-Yong
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.617-622
    • /
    • 2003
  • Experimental designs were applied to optimize the mixture ratio for the extrudate made by soymilk residue and corn grits. Nine candidate points were examined for their significance on extrudate using the modified distance design. Bending force, expansion ratio, bulk density, water solubility index (WSI), water absorption index (WAI) and color $(L^*,\;a^*,\;b^*)$ were the significant factors improving the extruded cereal production, and these values were applied to the mathematical models. Results showed that bending force, expansion ratio WSI, WAI and color $(L^*,\;b^*)$ increased with increasing the corn grits, whereas bulk density tended to decrease. The statistical study showed that the fitted models were adequate to describe the contour plot and all responses. Optimum mixture ratio allowing to maximize the two responses (expansion ratio and $b^*$) and minimize the response (WAI) were examined with a numerical optimization methods. The numerical optimization method was obtained as 53.18% : 46.19% (corn grits : soymilk residue).

A Unity-based Simulator for Tsunami Evacuation with DEVS Agent Model and Cellular Automata (DEVS 에이전트 모델과 셀 오토마타를 사용한 유니티엔진 기반의 지진해일 대피 시뮬레이터 개발)

  • Lee, Dong Hun;Kim, Dong Min;Joo, Jun Mo;Joo, Jae Woo;Choi, Seon Han
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.6
    • /
    • pp.772-783
    • /
    • 2020
  • Tsunami is a frightful natural disaster that causes severe damages worldwide. To minimize the damage, South Korea has built a tsunami warning system and designated evacuation sites in the east and south coasts. However, such countermeasures have not been verified whether they are adequate to minimize casualties since tsunami rarely occurs in South Korea. Recently, due to increasing earthquakes in the west coast of Japan, the likelihood of South Korea entering the damage area of tsunami rises; thus, in this paper, we develops a simulator based on Unity game engine to simulate the evacuation from tsunami. In order to increase the fidelity of the simulation results, the simulator applies a tsunami simulation model that analyzes coastal inundation based on cellular automata. In addition, the objects included in tsunami evacuation, such as humans, are modeled as an agent model that determines the situation and acts itself, based on the discrete-event system specification (DEVS), a mathematical formalism for describing a discrete event system. The tsunami simulation model and agent models are integrated and visualized in the simulator using Unity game engine. As an example of the use of this simulator, we verify the existing tsunami evacuation site in Gwangalli Beach in Busan and suggest the optimal alternative site minimizing casualties.