• Title/Summary/Keyword: adenosine $A_3$ receptor

Search Result 139, Processing Time 0.034 seconds

Role of Adenosine and Protein Kinase C in the Anti-ischemic Process of Ischemic Preconditioning in Rat Heart (허혈전처치의 허혈심장 보호과정에서 Adenosine 및 Protein Kinase C의 역할)

  • You, Ho-Jin;Park, Jong-Wan;Kim, Myung-Suk
    • The Korean Journal of Pharmacology
    • /
    • v.32 no.1
    • /
    • pp.31-37
    • /
    • 1996
  • The protective effect of 'ischemic preconditioning (IP)'on ischemia-reperfusion injury of heart has been reported in various animal species, but the mechanism is unclear. In an attempt to elucidate the mechanism of IP, we examined the effects of blockers against adenosine and protein kinase C in preconditioned heart of rat. The hearts perfused with oxygen-saturated Krebs-Henseleit solution by Langendorff method were exposed to 30 min global ischemia followed by 20 min reperfusion. IP was performed with three episodes of 5 min ischcmia and 5 min reperfusion just before ischemia-reperfusion. IP prevented the depression of contractile function and the myocardial contracture in the ischemic-reperfused heart and reduced the release of lactate dehydrogenase during the reperfusion period. Polymyxin B, chelerythrine and colchicine, PKC inhibitors, attenuated almost completely the anti-ischemic effect of IP, while adenosine receptor antagonists did not. These results indicate that PKC may be a crucial intracellular mediator in anti-ischemic action of IP in ischemic-reperfused rat heart, while adenosine may not be involved in the mechanism of IP.

  • PDF

Inhibitory Effects of Bojungchiseub-tang on Adipocyte Differentiation and Adipogenesis in 3T3-L1 Preadipocytes (보중치습탕이 3T3-L1 지방전구세포의 분화 및 지방생성 억제에 미치는 영향)

  • Lee, Soo Jung;Kim, Won Il;Kang, Kyung Hwa
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.28 no.3
    • /
    • pp.288-295
    • /
    • 2014
  • Bojungchiseub-tang (BJCST) has been used in symptoms and signs of edema, dampness-phlegm, kidney failure, and so on. BJCST is also expected to have strong anti-obesity activities. However, little is known about the mechanisms of its inhibitory effects on adipocyte differentiation and adipogenesis. In the present study, we examined the effects and mechanism of BJCST on transcription factors and adipogenic genes of 3T3-L1 preadipocytes to understand its inhibitory effects on adipocyte differentiation and adipogenesis. Our results showed that BJCST significantly inhibited differentiation and adipogenesis of 3T3-L1 preadipocytes in a dose-dependent manner. To elucidate the mechanism of the effects of BJCST on lowering lipid content in 3T3-L1 adipocytes, we examined whether BJCST modulate the expressions of transcription factors to induce adipogenesis and adipogenic genes related to regulate accumulation of lipids. As a result, the expression of steroid regulatory element-binding protein (SREBP)1, cytidine-cytidine-adenosine-adenosine-thymidine (CCAAT)/enhancer binding proteins ${\alpha}$ ($C/EBP{\alpha}$), $C/EBP{\beta}$, $C/EBP{\delta}$, and peroxisome proliferator-activated receptor ${\gamma}$ ($PPAR{\gamma}$) genes, which induce the adipose differentiation, liver X receptor $(LXR){\alpha}$ and fatty acid synthase (FAS) genes, which induce lipogenesis and adipose-specific aP2, Adipsin, lipoprotein lipase (LPL), CD36, TGF-${\beta}$, leptin and adiponectin genes, which compose fat formation were decreased. BJCST also reduced the expression of acyl CoA oxidase (ACO) and uncoupling protein (UCP) genes related to lipid oxidation. In conclusion, BJCST could regulate transcript factor related to induction of adipose differentiation and inhibited the accumulation of lipids and expression of adipogenic genes.

Inhibitory effects of total saponin from Korean Red Ginseng on [Ca2+]i mobilization through phosphorylation of cyclic adenosine monophosphate-dependent protein kinase catalytic subunit and inositol 1,4,5-trisphosphate receptor type I in human platelets

  • Shin, Jung-Hae;Kwon, Hyuk-Woo;Cho, Hyun-Jeong;Rhee, Man Hee;Park, Hwa-Jin
    • Journal of Ginseng Research
    • /
    • v.39 no.4
    • /
    • pp.354-364
    • /
    • 2015
  • Background: Intracellular $Ca^{2+}$($[Ca^{2+}]_i$) is a platelet aggregation-inducing molecule. Therefore, understanding the inhibitory mechanism of $[Ca^{2+}]_i$mobilization is very important to evaluate the antiplatelet effect of a substance. This study was carried out to understand the $Ca^{2+}$-antagonistic effect of total saponin from Korean Red Ginseng (KRG-TS). Methods: We investigated the $Ca^{2+}$-antagonistic effect of KRG-TS on cyclic nucleotides-associated phosphorylation of inositol 1,4,5-trisphosphate receptor type I ($IP_3RI$) and cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA) in thrombin (0.05 U/mL)-stimulated human platelet aggregation. Results: The inhibition of $[Ca^{2+}]_i$ mobilization by KRG-TS was increased by a PKA inhibitor (Rp-8-BrcAMPS), which was more stronger than the inhibition by a cyclic guanosine monophosphate (cGMP)- dependent protein kinase (PKG) inhibitor (Rp-8-Br-cGMPS). In addition, Rp-8-Br-cAMPS inhibited phosphorylation of PKA catalytic subunit (PKAc) ($Thr^{197}$) by KRG-TS. The phosphorylation of $IP_3RI$ ($Ser^{1756}$) by KRG-TS was very strongly inhibited by Rp-8-Br-cAMPS compared with that by Rp-8-BrcGMPS. These results suggest that the inhibitory effect of $[Ca^{2+}]_i$ mobilization by KRG-TS is more strongly dependent on a cAMP/PKA pathway than a cGMP/PKG pathway. KRG-TS also inhibited the release of adenosine triphosphate and serotonin. In addition, only G-Rg3 of protopanaxadiol in KRG-TS inhibited thrombin-induced platelet aggregation. Conclusion: These results strongly indicate that KRG-TS is a potent beneficial compound that inhibits $[Ca^{2+}]_i$ mobilization in thrombin-platelet interactions, which may result in the prevention of platelet aggregation-mediated thrombotic disease.

Relationship of Action of Adenosine Triphosphate and Prostaglandin $F_{2{\alpha}}$ on Uterine Smooth Muscle Motility in Immature Pig (미성숙 돼지 자궁 평활근의 운동성에 대한 Adenosine Triphosphate와 Prostaglandin $F_{2{\alpha}}$ 작용의 관계)

  • Kim, Joo-Heon;Kwun, Jong-Kuk;Kim, Yong-Keun
    • The Korean Journal of Physiology
    • /
    • v.22 no.1
    • /
    • pp.31-39
    • /
    • 1988
  • This study was carried out to investigate the action of adenosine triphosphate (ATP) on the motility of immature pig uterine smooth muscle. ATP appeared contractile responses in a dose-dependent manner, showing the maximal contraction at the concentration of $10^{-3}M$ in the uterine smooth muscle strip. The contractile responses by $ATP(10^{-4}M)$ were not affected by atropine $(10^{-6}M)$, phentolamine $(10^{-6}M)$, propranolol $(10^{-6}M)$, pyrilamine $(10^{-6}M)$, cimetidine $(10^{-6}M)$, and theophyulline $(5{\times}10^{-5}M)$, but were inhibited uncompetitively by quinidine. The effects of these drugs on the contractile responses by prostaglandin $F_{2{\alpha}}(PGF_{2{\alpha}})$ were also comparable to those observed with ATP. When muscle strips were pretreated with indomethacin $(5{\times}10^{-5}M)$ for 20 min., the contractile responses by $ATP(10^{-4}M)$ were completely inhibited. But the contractile responses by $PGF_{2{\alpha}}$ were not affected by indomethacin. These results suggest that ATP elicited the contraction through noncholinergic- and nonadrenergic-receptor mediated by prostaglandin $F_{2{\alpha}}$ in pig uterine smooth muscle.

  • PDF

Conditioning-induced cardioprotection: Aging as a confounding factor

  • Randhawa, Puneet Kaur;Bali, Anjana;Virdi, Jasleen Kaur;Jaggi, Amteshwar Singh
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.5
    • /
    • pp.467-479
    • /
    • 2018
  • The aging process induces a plethora of changes in the body including alterations in hormonal regulation and metabolism in various organs including the heart. Aging is associated with marked increase in the vulnerability of the heart to ischemia-reperfusion injury. Furthermore, it significantly hampers the development of adaptive response to various forms of conditioning stimuli (pre/post/remote conditioning). Aging significantly impairs the activation of signaling pathways that mediate preconditioning-induced cardioprotection. It possibly impairs the uptake and release of adenosine, decreases the number of adenosine transporter sites and down-regulates the transcription of adenosine receptors in the myocardium to attenuate adenosine-mediated cardioprotection. Furthermore, aging decreases the expression of peroxisome proliferator-activated receptor gamma co-activator 1-alpha ($PGC-1{\alpha}$) and subsequent transcription of catalase enzyme which subsequently increases the oxidative stress and decreases the responsiveness to preconditioning stimuli in the senescent diabetic hearts. In addition, in the aged rat hearts, the conditioning stimulus fails to phosphorylate Akt kinase that is required for mediating cardioprotective signaling in the heart. Moreover, aging increases the concentration of $Na^+$ and $K^+$, connexin expression and caveolin abundance in the myocardium and increases the susceptibility to ischemia-reperfusion injury. In addition, aging also reduces the responsiveness to conditioning stimuli possibly due to reduced kinase signaling and reduced STAT-3 phosphorylation. However, aging is associated with an increase in MKP-1 phosphorylation, which dephosphorylates (deactivates) mitogen activated protein kinase that is involved in cardioprotective signaling. The present review describes aging as one of the major confounding factors in attenuating remote ischemic preconditioning-induced cardioprotection along with the possible mechanisms.

Effects of Mahuang-Chuanwu(Mahwang-Cheonoh) Pharmacopuncture Solution on Adipocyte Differentiation and Gene Expression in 3T3-L1 Adipocytes (마황천오 약침액이 3T3-L1 지방세포 분화 및 유전자발현에 미치는 영향)

  • Kang, Kyung-Hwa
    • Korean Journal of Acupuncture
    • /
    • v.31 no.4
    • /
    • pp.168-178
    • /
    • 2014
  • Objectives : Mahuang-Chuanwu(Mahwang-Cheonoh) Pharmacopuncture(MCP) has been used to treat obesity in Clinical Korean Medicine. MCP solution(MCPS) is also expected to have strong anti-obesity activities. However, little is known about the mechanisms of its inhibitory effects on adipocyte differentiation and lipogenesis. Methods : In the present study, we examined the effects of MCPS on differentiation and lipogenesis of 3T3-L1 adipocytes. To elucidate the mechanism of the effects of MCPS on lowering lipid content in 3T3-L1 adipocytes, we examined whether MCPS modulates the expressions of transcription factors to induce lipogenesis and adipogenic genes related to regulate the accumulation of lipids. Results : Our results showed that MCPS significantly inhibited differentiation and lipogenesis of 3T3-L1 adipocytes in a dose-dependent manner. MCPS suppressed the mRNA expressions of cytidine-cytidine-adenosine-adenosine-thymidine(CCAAT)/enhancer binding proteins ${\alpha}$($C/EBP{\alpha}$), C/EBP ${\beta}$, $C/EBP{\delta}$, and peroxisome proliferator-activated receptor ${\gamma}$($PPAR{\gamma}$) genes related to the induction of adipose differentiation. MCPS inhibited the mRNA expressions of adipose-specific aP2, adipsin, lipoprotein lipase(LPL), CD36, TGF-${\beta}$, and leptin genes related to the fat formation. MCPS downregulated the mRNA expressions of liver X receptor(LXR) ${\alpha}$ and fatty acid synthase(FAS) genes related to the induction of lipogenesis. In addition, MCPS reduced the production of adipocyte-induced pro-inflammatory cytokines. Conclusions : MCPS could regulate the accumulation of lipids and expression of adipogenic genes via inhibition of transcript factors related to induction of adipose differentiation.

Control of Parturition Time on Pig;IV. Effect of ATP on Uterine Smooth Muscle Motility (돼지 분만 시기의 조절에 관하여;IV. 자궁 평활근의 운동성에 대한 APT의 영향)

  • 박상은;황보원;변유성;조광제
    • Korean Journal of Veterinary Service
    • /
    • v.19 no.2
    • /
    • pp.154-162
    • /
    • 1996
  • The effcets of adenosine 5'-triphosphate(ATP) were investigated on the uterine smooth muscle motility in the pig. The results were summarized as follows: 1. The effects of the porcine uterine smooth muscle and the contractile responses increased between the concentration of ATP $10^{-5}$ and $10^{-3}$ M with a dose-dependent manner. 2. The contractile response induced by ATP($10^{-4}$ M) was not blocked by pretreatment with cholinergic receptor blocker, atropine ($10^{-6}$ M) 3. The contractile response induced by ATP ($10^{-4}$ M) was not blocked by pretreatment with $\alpha$ -adrenergic receptor blocker, phentolamine(10$^{-6}$ M) and ${\beta}$-adrenergic blocker, propranolol ($10^{-6}$ M). 4. The contractile response induced by ATP($10^{-4}$ M) was not appeared in 4Ca^{++}$ -free medium. As the concentration of $Ca^{++}$ in $Ca^{++}$ -free medium was increased, the contractile response induced by ATP ($10^{-4}$ M) was enhenced but was completely inhibited by pretreatment with $Ca^{++}$ -channel blocker, papaverine($10^{-6}$ M) or verapamil($10^{-6}$ M). From these results, it was conclued that the effects of ATP were the contraction mediated by purinergic receptor in uterine smooth muscle of pig.

  • PDF

Effects of Rosa multiflora root extract on adipogenesis and lipogenesis in 3T3-L1 adipocytes and SD rat models

  • Kyoung Kon Kim;Hye Rim Lee;Sun Min Jang;Tae Woo Kim
    • Nutrition Research and Practice
    • /
    • v.18 no.2
    • /
    • pp.180-193
    • /
    • 2024
  • BACKGROUND/OBJECTIVES: Obesity is a major cause of metabolic disorders; to prevent obesity, research is ongoing to develop natural and safe ingredients with few adverse effects. In this study, we determined the anti-obesity effects of Rosa multiflora root extract (KWFD-H01) in 3T3-L1 adipocytes and Sprague-Dawley (SD) rats. MATERIALS/METHODS: The anti-obesity effects of KWFD-H01in 3T3-L1 adipocytes and SD rats were examined using various assays, including Oil Red O staining, gene expression analyses, protein expression analyses, and blood biochemical analyses. RESULTS: KWFD-H01 reduced intracellular lipid accumulation and inhibited the mRNA expression of peroxisome proliferator-activated receptor γ (PPARγ), cytidine-cytidine-adenosine-adenosine-thymidine (CCAAT)/enhancer binding proteins (C/EBPα), sterol regulatory element-binding transcription factor 1 (SREBP-1c), acetyl-CoA carboxylase (ACC), and fatty acid synthase (FAS) in 3T3-L1 cells. KWFD-H01 also reduced body weight, weight gain, and the levels of triglycerides, total and LDL-cholesterol, glucose, and leptin, while increasing high-density lipoprotein-cholesterol and adiponectin in SD rats. PPARγ, C/EBPα, SREBP-1c, ACC, and FAS protein expression was inhibited in the epididymal fat of SD rats. CONCLUSION: Overall, these results confirm the anti-obesity effects of KWFD-H01 in 3T3-L1 adipocytes and SD rats, indicating their potential as baseline data for developing functional health foods or pharmaceuticals to control obesity.

Effect of epidural polydeoxyribonucleotide in a rat model of lumbar foraminal stenosis

  • Lee, Ho-Jin;Ju, Jiyoun;Choi, Eunjoo;Nahm, Francis Sahngun;Choe, Ghee Young;Lee, Pyung Bok
    • The Korean Journal of Pain
    • /
    • v.34 no.4
    • /
    • pp.394-404
    • /
    • 2021
  • Background: We aimed to investigate the effect of epidural polydeoxyribonucleotide (PDRN) on mechanical allodynia and motor dysfunction in a rat model of lumbar foraminal stenosis (LFS). Methods: This study was conducted in two stages, using male Sprague-Dawley rats. The rats were randomly divided into eight groups. In the first stage, the groups were as follows: vehicle (V), sham (S), and epidural PDRN at 5 (P5), 8 (P8), and 10 (P10) mg/kg; and in the second stage, they were as follows: intraperitoneal PDRN 8 mg/kg, epidural 3,7-dimethyl-1-propargilxanthine (DMPX) (0.1 mg/kg), and DMPX (0.1 mg/kg). The LFS model was established, except for the S group. After an epidural injection of the test solutions, von Frey and treadmill tests were conducted for 3 weeks. Subsequently, histopathologic examinations were conducted in the V, S, P5, and P10 groups. Results: A total of 65 rats were included. The P8 and P10 groups showed significant recovery from mechanical allodynia and motor dysfunction at all time points after drug administration compared to the V group. These effects were abolished by concomitant administration of DMPX. On histopathological examination, no epineurial inflammation or fibrosis was observed in the epidural PDRN groups. Conclusions: Epidural injection of PDRN significantly improves mechanical allodynia and motor dysfunction in a rat model of LFS, which is mediated by the spinal adenosine A2A receptor. The present data support the need for further research to determine the role of epidural PDRN in spinal stenosis treatment.

Effect of Unilateral Renal Arterial Infusion of Angiotensin II on Renal Function and Renin Secretion in Unanesthetized Rabbit (신동맥내 투여한 Angiotensin II가 신장기능 및 Renin 분비에 미치는 영향)

  • Kim, Jong-Hun;Kang, Nam-Poo;Kim, Young-Jin;Kim, Suhn-Hee;Cho, Kyung-Woo
    • The Korean Journal of Physiology
    • /
    • v.23 no.2
    • /
    • pp.363-375
    • /
    • 1989
  • It has been well known that peripheral infusion of angiotensin II results in an increase of blood pressure, and an elevation of aldosterone secretion, and an inhibition of renin relase. However, the direct effect of angiotensin II on renal function has not been clearly established. In the present study, to investigate the effect of angiotensin II on renal function and renin release, angiotensin II (0.3, 3 and 10 ng/kg/min) was infused into a unilateral renal artery of the unanesthetized rabbit and changes in renal function and active and inactive renin secretion rate (ARSR, IRSR) were measured. In addition, to determine the relationship between the renal effect of angiotensin II and adenosine, the angiotensin II effect was evaluated in the presence of simultaneously infused 8-phenyltheophylline (8-PT, 30 nmole/min), adenosine A 1 receptor antagonist. Angiotensin II infusion at dose less than 10 ng/kg/min decreased urine flow, clearances of para-amino-hippuric acid and creatinine, and urinary excretion of electrolytes in dose-dependent manner. The changes in urine flow and sodium excretion were significantly correlated with the change in renal hemodynamics. Infusion of angiotensin II at 10 ng/kg/min also decreased ARSR, but it has no significant effect on IRSR. The change in ARSR was inversely correlated with the change in IRSR. The plasma concentration of catecholamine was not altered by an intarenal infusion of angiotensin II. In the presence of 8-PT in the infusate, the effect of angiotensin II on renal function was significantly attenuated, but that on renin secretion was not modified. These results suggest that the reduction in urine flow and Na excretion during intrarenal infusion of angiotensin II was not due to direct inhibitions of renal tubular transport systems, but to alterations of renal hemodynamics which may partly be mediated by the adenosine receptor.

  • PDF