We describe a solution to the Ornstein-Uhlenbeck equation $\frac{dI}{dt}-\frac{1}{\tau}$I(t)=cV(t) where V(t) is a constant multiple of a Gaussian white noise. Our solution is based on a discrete set of Gaussian white noise obtained by taking sample points from a sum of single frequency harmonics that have random amplitudes, random frequencies, and random phases. Hence, it is different from the solution by the standard random walk using random numbers generated by the Box-Mueller algorithm. We prove that the power of the signal has the additive property, from which we derive that the Lyapunov characteristic exponent for our solution is positive. This compares with the solution by other methods where the noise is kept to be in an error range so that its Lyapunov exponent is negative.
In this paper, a signal detection scheme for cognitive radio (CR) based on the Bussgang theorem is proposed. The proposed scheme calculates the statistical difference between Gaussian noise and the primary user signal by applying the Bussgang theorem to the received signal. Therefore, the proposed scheme overcomes the noise uncertainty and gives scalable complexity according to the zero-memory nonlinear function for a mobile device. We also present the theoretical analysis on the detection threshold and the detection performance in the additive white Gaussian noise channel. The proposed detection scheme is evaluated by computer simulations based on the IEEE 802.22 standard for the wireless regional area network. Our results show that the proposed scheme is robust to the noise uncertainty and works well in a very low signal-to-noise ratio.
Journal of information and communication convergence engineering
/
v.5
no.1
/
pp.1-6
/
2007
In the process of the acquisition, storage, transmission of signals, noises are generated by various causes and the degradation phenomenon by noises tends to generate serious errors for the signal with information. So, in order to analyze and remove these noises, studies on numerous mathematical methods such as the Fourier transform have been implemented. And recently there have been many ongoing wavelet-based denoising algorithms representing excellent characteristics in time-frequency localization and multiresolution analysis, but the method to remove additive white Gaussian noise (AWGN) and the impulse noise simultaneously was not given. So, to reconstruct the corrupted signal by noises, in this paper a novel wavelet-based denoising algorithm was proposed and using signal-to-noise ratio (SNR) this method was compared to conventional methods.
Journal of the Korean Data and Information Science Society
/
v.20
no.5
/
pp.869-878
/
2009
Image restoration techniques such as noise reduction and contrast enhancement have been researched for enhancing a contaminated image by the noise. An image degraded by additive random noise can be enhanced by noise reduction. Sigma filtering is one of the most widely used method to reduce the noise. In this paper, we propose a new sigma filter algorithm based on noise variance estimation which effectively enhances the degraded image by noise. Specifically, the Bartlett test is used to measure the degree of noise with respect to the degree of image feature. Simulation results are also given to show the performance of the proposed algorithm.
One of the problems on the application of the speech recognition system in the real world is the degradation of the performance by acoustical distortions. The most important source of acoustical distortion is the additive noise. This paper describes a spectral compensation technique based on a spectral peak enhancement scheme followed by an efficient noise subtraction scheme for noise robust speech recognition. The proposed methods emphasize the formant structure and compensate the spectral tilt of the speech spectrum while maintaining broad-bandwidth spectral components. The recognition experiments was conducted using noisy speech corrupted by white Gaussian noise, car noise, babble noise or subway noise. The new technique reduced the average error rate slightly under high SNR(Signal to Noise Ratio) environment, and significantly reduced the average error rate by 1/2 under low SNR(10 dB) environment when compared with the case of without spectral compensations.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2017.10a
/
pp.173-175
/
2017
With the rapid progress of the digital area has come the increase in demand for multi-media services. Imaging processing as a result is being hailed as a technological field that can offer smart and efficient methods for the processing and analysis of images. In general, noise exist in various types, depending on the cause and form. Some leading examples of noise are AWGN(additive white Gaussian noise), salt and pepper noise and complex noise. This study suggests an algorithm to remove complex noise by using the standard deviation and noise density of the partial mask in order to effectively remove complex noise in images.
Journal of the Korea Institute of Information and Communication Engineering
/
v.14
no.12
/
pp.2798-2804
/
2010
The audio and image signal are corrupted by various noises in signal processing, many studies are being accomplished to restore those signals. In this paper, the algorithm is proposed to remove additive Gaussian noise and impulse noise at one dimension signal like an speech signal. The algorithm is composed to remove Gaussian noise after removing impulse noise. And the method using wavelet coefficient accumulation is used to remove the Gaussian noise, and the median filter based on element deviation is applied to remove the impulse noise. Also we compare existing methods using SNR(signal-to-noise ratio) as the standard of judgement of improvemental effect.
The Journal of Korean Institute of Communications and Information Sciences
/
v.38A
no.2
/
pp.183-190
/
2013
In this paper, we propose a spatially adaptive noise detection and removal algorithm for a single degraded image. Under the assumption that an observed image is Gaussian-distributed, the noise information is estimated by local statistics of degraded image, and the degree of the additive noise is detected by the local statistics of the estimated noise. In addition, we describe a noise removal method taking a modified Gaussian filter which is adaptively determined by filter parameters and window size. The experimental results demonstrate the capability of the proposed algorithm.
Hegde, Vijayalaxmi;Jagadale, Basavaraj N.;Naragund, Mukund N.
International Journal of Computer Science & Network Security
/
v.21
no.12spc
/
pp.556-564
/
2021
Numerous spatial and transform-domain-based conventional denoising algorithms struggle to keep critical and minute structural features of the image, especially at high noise levels. Although neural network approaches are effective, they are not always reliable since they demand a large quantity of training data, are computationally complicated, and take a long time to construct the model. A new framework of enhanced hybrid filtering is developed for denoising color images tainted by additive white Gaussian Noise with the goal of reducing algorithmic complexity and improving performance. In the first stage of the proposed approach, the noisy image is refined using a high-dimensional non-local means filter based on Principal Component Analysis, followed by the extraction of the method noise. The wavelet transform and SURE Shrink techniques are used to further culture this method noise. The final denoised image is created by combining the results of these two steps. Experiments were carried out on a set of standard color images corrupted by Gaussian noise with multiple standard deviations. Comparative analysis of empirical outcome indicates that the proposed method outperforms leading-edge denoising strategies in terms of consistency and performance while maintaining the visual quality. This algorithm ensures homogeneous noise reduction, which is almost independent of noise variations. The power of both the spatial and transform domains is harnessed in this multi realm consolidation technique. Rather than processing individual colors, it works directly on the multispectral image. Uses minimal resources and produces superior quality output in the optimal execution time.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.