• Title/Summary/Keyword: additive effects

Search Result 1,314, Processing Time 0.027 seconds

In vivo Anti-fungal Activity of the Essential Oil Fraction from Thymus Species and in vitro Synergism with Clotrimazole

  • Kim, Ji-Hyun;Shin, Seung-Won
    • Natural Product Sciences
    • /
    • v.13 no.3
    • /
    • pp.258-262
    • /
    • 2007
  • The antifungal activity of the essential oil fraction from Thymus magus, and its major component thymol, against Candida albicans was investigated in vitro and in vivo. The combined effects of the oils and clotrimazole, a commonly used antifungal drug for treatment of external candidiasis, were evaluated in this study. In experimental vaginal candidiasis the essential oil fraction of T. magnus resulted in relatively milder inhibition of fungal growth following the inoculation of test mice compared to clotrimazole. However, new fungal growth was not detected up to 12 days after cessation of treatment. In contrast, in a similar experiment using clotrimazole, C. albicans was detected in the $12^{th}$ day post-treatment with the sample. This result indicates that T. magnus oil could be a promising drug to control vaginal candidiasis. In checkerboard titer tests, the combination of clotrimazole with the essential oil fraction of T. magus or T. quinquecostatus resulted in significant synergism, with FIC indices between 0.14 and 0.27 against C. albicans, while clotrimazole combined with thymol, the major component of these oils, produced only an additive effect, with FIC indices ranging between 0.50 and 1.00. Thus, the prominent synergistic effects of clotrimazole combined with T. magus essential oil indicate that these compounds may be an effective treatment for C. albicans infections.

Effects of Organic Additives on Residual Stress and Surface Roughness of Electroplated Copper for Flexible PCB

  • Kim, Jongsoo;Kim, Heesan
    • Corrosion Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.154-158
    • /
    • 2007
  • For the application of flexible printed circuit board (FPCB), electroplated copper is required to have low surface roughness and residual stress. In the paper, the effects of surface roughness and residual stress of electroplated copper as thick as $8{\mu}m$ were studied on organic additives such as inhibitor, leveler and accelerator. Polyimide film coated with sputtered copper was used as a substrate. Surface roughness and surface morphology were measured by 3D-laser surface analysis and FESEM, respectively. Residual stress was calculated by Stoney's equation after measuring radius curvature of specimen. The addition of additives except high concentration of accelerator in the electrolyte decreased surface roughness of electroplated copper film. Such a tendency was explained by the function of additives among which the inhibitor and the leveler inhibit electroplating on a whole surface and prolusions, respectively. The accelerator plays a role in accelerating the electroplating in valley parts. The inhibitors and the leveler increased residual stress, whereas the accelerator decreased it. It was thought to be related with entrapped additives on electroplated copper film rather than the preferred orientation of electroplated copper film. The reason why additives lead to residual stress remains for the future work.

A Study of Size and Frictional Effects on the Evolution of Melting Part I : Batch Mixer (입자크기와 마찰효과가 용융 과정에 미치는 영향 Part I : 회분식 혼련기)

  • Kim, Dong-Sung;Park, Yung-Jin;Lee, Bong-Kyu;Kim, Hyung-Su;Lee, Jae-Wook
    • The Korean Journal of Rheology
    • /
    • v.11 no.1
    • /
    • pp.44-49
    • /
    • 1999
  • Effects of particulate size and frictional characteristics were examined on the melting behavior of PP (polypropylene) in a batch mixer. Powder and pellet types of PP were used and each component was blended with PE (polyethylene) wax and clay, respectively. It was observed that small size particulates, i.e. powder systems exhibit accelerated melting behavior; and it was also found that the abrasive additive acts as an effective agent for fast melting of PP powder. Retardation of melting due to the reduced friction was observed in PP pellet/PE wax blends, while melting rate of PP powder was increased by addition of PE wax.

  • PDF

Effects of $v_2O_5$ Addition on the Magnetic Properties of Mn-Zn Ferrites (Mn-Zn Ferrites 의 자기적 성질에 미치는 $V_2O_5$의 첨가효과)

  • Jo, Deok-Ho
    • Journal of the Korean Magnetics Society
    • /
    • v.2 no.3
    • /
    • pp.222-227
    • /
    • 1992
  • The effects of $V_2O_5$ addition as an additive on the densification, the microstructure and the magnetic properties of Mn-Zn ferrites were studied. The maximum density was observed at 0.1 wt% $V_2O_5$ content and it was recognized that a small content of $V_2O_5$ prohibited the discontinuous grain growth. The initial permeability showed maximum at 0.1 wt% $V_2O_5$ content and the power loss minimum at 0.03 wt% $V_2O_5$ content. It was found that a small content of $V_2O_5$ went into solid solution in the Mn-Zn ferrites, but above that extent $V_2O_5$ formed a second phase to be segregated at the grain boundaries.

  • PDF

Effects of Minor Alloying Elements on the Mechanical Properties and Formability of Mg-3%Zn-0.5%Sn Base Sheet Alloys (Mg-3%Zn-0.5%Sn계 판재합금의 기계적 성질과 성형성에 미치는 미량합금원소의 영향)

  • Kim, Jeong-Min;Park, Joon-Sik;Kim, Ha-Young;Kim, Ki-Tae
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.21 no.2
    • /
    • pp.87-93
    • /
    • 2008
  • A variety of minor alloying elements such as Zr, Sr, Y, and Gd were added to Mg-3%Zn-0.5%Sn base alloy to form various fine precipitates and their effects on the microstructure, tensile properties, and sheet metal formability were investigated. Various very fine precipitates along with fine second phases were observed by the additions. It was found that Zr or Gd additive has a role to suppress the grain coarsening of alloy sheets during the hot working process. The Zr-added alloy showed the highest tensile elongation at $250^{\circ}C$ whereas the Gd-added alloy exhibited the best sheet metal forming characteristics in terms of CCV (conical cup value) and spring-back tendency.

Study on the expected efficacies of the Asparagi Tuber by analysis of single-medicine prescriptions on the Korean medicinal literatures (한의학 고문헌의 단방용례 분석을 통한 천문동의 기대효능 연구)

  • Choi, Go-Ya;Yoon, Tae-Sook;Choo, Byung-Kil;Moon, Byeong-Cheol;Chae, Sung-Wook;Kim, Ho-Kyoung
    • Korean Journal of Oriental Medicine
    • /
    • v.14 no.1
    • /
    • pp.59-66
    • /
    • 2008
  • We referred to twenty-two Korean medicinal literatures for application of a single-medicine prescription using Asparagi Tuber(Asparagus cochinchinensis) to form the groundwork for scientific modernization of Korean medicine. Our study revealed the following. 1. Principle expectant effects of Asparagi Tuber were prolong life; elevation of stamina or activity; improvement of asthenia; remedy of epilepsy, mental disease or convulsions; relief of xerosis; treatment of tumor, abscess or intumescence; extermination of endoparasite; solution of numbness, etc. 2. The records show that 95% of directions are per oral. 3. 38% of the cases, Asparagi Tuber was used without its jacket or core. 4. Alcohol and honey were generally used as solvent and additive. We suggest to perform the further studies for the scientific verification of the expectant effects of Asparagi Tuber and its different efficacy by processing, solvent and additives.

  • PDF

Effects of oxygen and hydrogen additives on electrical, optical, and structural properties of ZnO films (수소 및 산소 첨가에 따른 산화아연막의 전기적, 광학적, 구조적 물성)

  • Bang, Jung-Hwan;Kim, Won;Uhm, Hyun-Seok;Park, Jin-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1246_1247
    • /
    • 2009
  • Effects of hydrogen and oxygen additives on structural, optical, and electrical properties of ZnO films were extensively examined. ZnO films were deposited using RF sputtering by varying the gas mixing ratio of $H_2$ and $O_2$. Optical transmittances at visible region, electrical resistivities, and micro-structures of ZnO films were characterized in terms of the kind and amount of additive gases. It was observed that the material properties of ZnO films required for their use in transparent thin film transistors, such as approximately $10^3{\Omega}cm$ in resistivity and higher than 85% in transmittance, can be achieved by controlling the gas mixing ratio of $O_2/H_2$ (sccm) in the range of 2/2~2/8.

  • PDF

Electrochemical Corrosion and Chemical Mechanical Polishing(CMP) Characteristics of Tungsten Film using Mixed Oxidizer (혼합 산화제를 사용한 텅스텐 막의 전기화학적 부식 및 CMP 특성)

  • Na, Eun-Young;Seo, Yong-Jin;Lee, Woo-Sun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.4
    • /
    • pp.303-308
    • /
    • 2005
  • In this paper, the effects of oxidants on tungsten chemical mechanical polishing (CMP) process were investigated using three different oxidizers such as Fe(NO₃)₃, KIO₃ and H₂O₂. Moreover, the interaction between the tungsten film and the oxidizer was discussed by potentiodynamic polarization measurement with three different oxidizers, in order to compare the effects of W-CMP and electrochemical characteristics on the tungsten film as a function of oxidizer. As an experimental result, the tungsten removal rate reached a maximum at 5 wt% Fe(NO₃)₃concentration, and when 5 wt% H₂O₂was added in the slurry, the removal rate of W increased. Also, the microstructures of surface layer by atomic force microscopy(AFM) image were greatly influenced by the slurry chemical composition of oxidizers. It was shown that the surface roughness and removal rate of the polished surface were improved in Fe(NO₃)₃than KIO₃. The electrochemical results indicate that the corrosion current density of the 5 wt% H₂O₂ and 5 wt% H₂O/sub 2+/+ 5 wt% Fe(NO₃)₃was higher than the other oxidizers. Therefore, we conclude that the W-CMP characteristics are strongly dependent on the kinds of oxidizers and the amounts of oxidizer additive.

Effects of compatibility between PNS Superplasticzer and soluble alkali of cements on performances of concrete (PNS계 고성능 감수제와 시멘트 수용성 알칼리양과의 상용성이 콘크리트 물성에 미치는 영향)

  • Ahn, Tae-ho;Park, Junhui;Sho, Kwangho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.4
    • /
    • pp.173-177
    • /
    • 2017
  • A polynaphthalenesulfonate (PNS) superplasticizer and its relation to the fluidity of cement paste (w/c = 0.35) has been investigated for three cements at a given dosage of PNS superplasticizer. Chemical properties of three cements were characterized with a XRD, XRF. The additive effects of $Na_2SO_4$ on the fresh concrete with w/c = 0.33 were also estimated by the measurement of compressive strength, slump, air content. The experimental results exhibited that the addition of sodium sulfate 2.6 % to the cement A and C improves slump loss. In case of cement E, the addition of sodium sulfate 1.3 % was effective.

Redox reaction of Fe-based oxide mediums for hydrogen storage and release: cooperative effects of Rh, Ce and Zr additives (수소 저장 및 방출을 위한 Fe 계 산화물 매체의 환원-산화 반응: Rh, Ce 및 Zr 첨가제의 협동 효과)

  • Lee, Dong-Hee;Park, Chu-Sik;Kim, Young-Ho
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.3
    • /
    • pp.189-198
    • /
    • 2008
  • Cooperative effects of Rh, Ce and Zr added to Fe-based oxide mediums were investigated using temperature programmed redox reaction (TPR/TPO) and isothermal redox reaction in the view point of hydrogen storage and release. As the results of TPR/TPO, Rh was a sale additive to remarkably promote the redox reaction on the medium as evidenced by the lower highest peak temperature, even though its addition was to accelerate deactivation of the mediums due to sintering. On the other hand, Ce and Zr additives played an important role to suppress deactivation of the medium in repeated redox cycles. The medium co-added by Rh, Ce and Zr (FRCZ) exhibited synergistic performance in the repeated isothermal redox reaction, and the amount of hydrogen produced in the water splitting step at 623 K was highly maintained at ca. $17\;mmol{\cdot}g^{-1}-Fe$ during three repeated redox cycles.