• Title/Summary/Keyword: addition polymerization

Search Result 369, Processing Time 0.023 seconds

The Preparation of D-Phenylalanine Imprinted Microbeads by a Novel Method of Modified Suspension Polymerization

  • Khan, Hamayun;Park, Joong-Kon
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.6
    • /
    • pp.503-509
    • /
    • 2006
  • Molecularly imprinted polymeric microbeads (MIPMs) were prepared by the suspension and modified suspension polymerization methods using D-phenylalanine as the template, methacrylic acid as the functional monomer, ethylene glycol dimethacrylate as the cross-linker, toluene as the porogen, polyvinyl alcohol as the stabilizer, and sodium dodecyl sulfate as the surfactant. The addition of a surfactant to the conventional suspension polymerization mixture decreased the mean particle size of the MIPMs and increased the adsorption selectivity. For the modified suspension polymerization method, the mean particle size of the MIPMs was smaller than the particle size of MIPMs prepared via conventional suspension polymerization. Moreover, the adsorption selectivity improved considerably compared to the adsorption selectivities of MIPs reported previously.

Preparation of Highly Cross-linked, Monodisperse Poly(methyl methacrylate) Microspheres by Dispersion Polymerization; Part I. Batch Processes

  • Lee, Ki-Chang;Lee, Sang-Yun
    • Macromolecular Research
    • /
    • v.15 no.3
    • /
    • pp.244-255
    • /
    • 2007
  • Nucleation is the most sensitive stage in the preparation of highly cross-linked, monodisperse microspheres by dispersion polymerization, since the addition of a small amount of cross-linker results in particle deformation and coagulation. To overcome these problems, $5\;{\mu}m$ poly(methyl methacrylate) seed particles prepared by dispersion polymerization were used in the preparation of mono disperse, cross-linked PMMA particles containing up to 7 wt% divinylbenzene by seeded batch dispersion polymerization. Spherical particles with a narrow size distribution containing up to 8 wt% of EGDMA were prepared by seeded multi-batch dispersion polymerization processes. These particles were identified by scanning electron microscopy and DSC.

Amphiphilic Norbornene-Based Diblock Copolymers Containing Polyhedral Oligomeric Silsesquioxane Prepared by Living Ring Opening Metathesis Polymerization

  • Park, Su-Dong;Xu, Wentao;Chung, Chan-Hong;Kwon, Young-Hwan
    • Macromolecular Research
    • /
    • v.16 no.2
    • /
    • pp.155-162
    • /
    • 2008
  • We report the successful synthesis of poly(NBECOOH-b-NBEPOSS) copolymers, taking advantage of the sequential, living ring opening metathesis polymerization of NBETMS and NBEPOSS using the $RuCl_2(=CHPh)(PCY_3)_2$/$CH_2Cl_2$/$20^{\circ}C$ system, followed by the hydrolysis of trimethylsilyl groups in poly(NBETMS-b-NBEPOSS) copolymers. The living behavior of ROMP of NBETMS was first investigated using two diagnostic plots, a first order kinetic plot and a $\bar{M}_n$ vs. conversion plot. The plots confirmed that no termination and chain transfer reaction had occurred during polymerization. Poly(NBECOOH-b-NBEPOSS) copolymers were prepared using the sequential monomer addition of NBEPOSS to living poly(NBETMS) chain ends, followed by the hydrolysis of trimethylsilyl groups in the poly(NBETMS-b-NBEPOSS) copolymers. The high structural integrity of poly(NBE-COOH-b-NBEPOSS) copolymers was confirmed by $^1H$-NMR, $^{13}C$-NMR spcctroscopy and GPC.

A Kinetic Monte Carlo Simulation of Individual Site Type of Ethylene and α-Olefins Polymerization

  • Zarand, S.M. Ghafelebashi;Shahsavar, S.;Jozaghkar, M.R.
    • Journal of the Korean Chemical Society
    • /
    • v.62 no.3
    • /
    • pp.191-202
    • /
    • 2018
  • The aim of this work is to study Monte Carlo simulation of ethylene (co)polymerization over Ziegler-Natta catalyst as investigated by Chen et al. The results revealed that the Monte Carlo simulation was similar to sum square error (SSE) model to prediction of stage II and III of polymerization. In the case of activation stage (stage I) both model had slightly deviation from experimental results. The modeling results demonstrated that in homopolymerization, SSE was superior to predict polymerization rate in current stage while for copolymerization, Monte Carlo had preferable prediction. The Monte Carlo simulation approved the SSE results to determine role of each site in total polymerization rate and revealed that homopolymerization rate changed from site to site and order of center was different compared to copolymerization. The polymer yield was reduced by addition of hydrogen amount however there was no specific effect on uptake curve which was predicted by Monte Carlo simulation with good accuracy. In the case of copolymerization it was evolved that monomer chain length and monomer concentration influenced the rate of polymerization as rate of polymerization reduced from 1-hexene to 1-octene and increased when monomer concentration proliferate.

Novel thermal radical initiators based on a triazene moiety for radical polymerization

  • Kang, Seokwoo;Kim, Taemin;Kim, Beomjin;Jeong, Yeonkyu;Park, Young Il;Noh, Seung Man;Park, Jongwook
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.1-5
    • /
    • 2018
  • In this study, we designed and synthesized novel thermal radical initiators of BTAP (1-phenyl-3,3-dipropyltriazene), BTACP (1-(phenyldiazenyl)pyrrolidine), BTACH (1-(phenyldiazenyl)piperidine), and BTACH7 (1-(phenyldiazenyl)azepane) based on a triazene moiety to provide a thermal initiator for radical polymerization. The synthetic method is valuable due to the simplicity. In addition, the synthesized thermal initiator did not affect the color of the polymer. Among the four initiators, the polymerization time for the BTACH of the 6-membered ring decreased by 67%, as opposed to the polymerization time without initiator. Conversion after polymerization was over 92%. DSC experiments also showed that the initiator with hexagonal rings had the lowest peak polymerization temperature of $160^{\circ}C$. Our study suggests a promising new initiator system that is effective for radical polymerization.

THE AMOUNTS AND SPEED OF POLYMERIZATION SHRINKAGE AND MICROHARDNESS IN LED CURED COMPOSITES (LED를 이용한 복합레진의 광조사시, 중합수축의 속도와 양, 미세경도에 관한 연구)

  • Park, Sung-Ho;Kim, Su-Sun;Cho, Yong-Sik;Lee, Soon-Young;Kim, Do-Hyun;Jang, Yong-Joo;Mun, Hyun-Sung;Seo, Jung-Won;Noh, Byung-Duk
    • Restorative Dentistry and Endodontics
    • /
    • v.28 no.4
    • /
    • pp.354-359
    • /
    • 2003
  • This study evaluated the effectiveness of the light emitting diode(LED) units for composite curing. To compare its effectiveness with conventional quartz tungsten halogen (QTH) light curing unit. the microhardness of 2mm composite. Z250, which had been light cured by the LEDs (Ultralume LED2, FreeLight, Developing product Dl) or QTH (XL 3000) were compared on the upper and lower surface. One way ANOVA with Tukey and Paired t-test was used at 95% levels of confidence. In addition. the amount of linear polymerization shrinkage was compared between composites which were light cured by QTH or LEDs using a custom-made linometer in 10s and 60s of light curing, and the amount of linear polymerization shrinkage was compared by one way ANOVA with Tukey. The amount of polymerization shrinkage at 10s was XL3000 > Ultralume 2. 40. 60 > FreeLight, D1 (P<0.05) The amount of polymerization shrinkage at 60s was XL3000 > Ultralume 2, 60> Ultralume 2.40 > FreeLight, D1 (P<0.05) The microhardness on the upper and lower surface was as follows ; (equation omitted) It was concluded that the LEDs produced lower polymerization shrinkage in 10s and 60s compared with QTH unit. In addition. the microhardness of samples which had been cured with LEDs was lower on the lower surfaces than the upper surfaces whereas there was no difference in QTH cured samples.

Diacetylene Polymerize in Amorphous State? Free Radical Initiated Polymerization of Aromatic Diacetylenes.

  • Beristain Miriam F.;Ogawa Takeshi
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.321-321
    • /
    • 2006
  • Aromatic diacetylenes form stable oligomeric diradicals when irradiated with UV light or heated at temperatures above their melting points. In this paper, the formation of stable diradicals is discussed, and the mechanism of polymerization in the presence of peroxide in solution, is discussed. The diphenyldiacetylene undergoes polymerization through coupling of diradicals, and not by the successive addition of radical species.

  • PDF

Living cationic polymerization of poly (isobutyl vinyl ether) and PVA derived therefrom

  • Mah, Soukil
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10a
    • /
    • pp.1-2
    • /
    • 2003
  • Some new synthetic routes for the preparation of poly (isobutyl vinyl ether) (P(IBVE)) having a controllable molar mass with narrow distribution via catalytic or photoinduced living cationic polymerization and their conversion to corresponding PVA have been developed. It was found that the combination of iodomethyl methyl ether (IMME)-zinc iodide is effective in the initiation of the catalytic and the various combinations of diphenyliodonium halides, well known photocationic initiators (DPIX) with zinc halides (ZnX$_2$) are also useful in photoinduced living cationic polymerization of isobutyl vinyl ether (IBVE). Polymerization both in the catalytic and photoinduced systems precede until the full consumption of the monomer and the rate of polymerization increases as the concentration of the catalyst or photoinitiator. The number average molar mass of the resulting polymer is proportional with % conversion, which is determined by the ratio of monomer consumed and the initial values of the catalyst or initiator. The living nature was also confirmed by subsequent monomer addition technique.

  • PDF

Living cationic polymerization of Viny Ethers in Presence of Iodomethyl Methyl Ether and Zinc Iodide

  • Kwon, Soonhong;Lee, Yunsung;Mah, Soukil
    • Fibers and Polymers
    • /
    • v.2 no.1
    • /
    • pp.131-134
    • /
    • 2001
  • Living cationic polymerization behaviors of isobutyl vinyl ehters (IBVE), initiated by iodomethyl methyl ether (IMME)/zinc iodide ($Znl_2$) have been investigated. The polymerization was carried out at 0, -15, and $-30^{\circ}C$ in toluene. It was found that the rate of polymerization increased as the IMME concentration increased and decreased as temperature decreased. 100% conversion was always achieved without exception. Furthermore, the number-average molecular weight ($M_{n}$) of polymers increased in direct proportion to monomer conversion. The molecular weights of polymers were in good agreement with the theoretical values, calculated on the basis that one polymer chain was formed by one IMME molecule and the values of polydispersity index are always less than 1.2, revealing the living nature. The living nature was also confirmed by synthesis of poly(IBVE-b-TBVE) by subsequent monomer addition of t-butyl vinyl ether (TBVE).

  • PDF

Atom Transfer Radical Polymerization of Hexadecyl Acrylate Using CuSCN as the Catalyst

  • Xu, Wenjian;Zhu, Xiulin;Cheng, Zhenping;Chen, Jianying;Lu, Jianmei
    • Macromolecular Research
    • /
    • v.12 no.1
    • /
    • pp.32-37
    • /
    • 2004
  • The atom transfer radical polymerization (ATRP) of hexadecyl acrylate (HDA) was carried out in Ν,Ν-dimethylformamide (DMF) in the presence of CuSCN/Ν,Ν,Ν′,Ν"Ν"-pentamethyldiethylenetriamine (PMDETA). The results indicate that the polymerization is well-controlled: a linear increase of molecular weights occurs with respect to conversion and the polydispersities are relatively low. In particular, the use of CuSCN as the catalyst resulted in faster polymerization rates for hexadecyl acrylate than did those using either CuBr or CuCl; the polydis-persity, however, was larger than those obtained in the cases when CuBr and CuCl were used. In addition, we report the thermodynamic data and activation parameters for the solution ATRP of hexadecyl acrylate.