• Title/Summary/Keyword: added viscous dampers

Search Result 9, Processing Time 0.022 seconds

Seismic design of a precast r.c. structure equipped with viscous dampers

  • Silvestri, Stefano;Gasparini, Giada;Trombetti, Tomaso
    • Earthquakes and Structures
    • /
    • v.2 no.3
    • /
    • pp.297-321
    • /
    • 2011
  • The seismic design of a two-storey precast reinforced-concrete building structure equipped with viscous dampers is presented in this paper with twofold purpose. The first goal is to verify the applicability of a practical procedure for the identification of the mechanical characteristics of the viscous dampers which allow to achieve target performance levels, originally proposed by the authors for moment-resisting building frames, also with reference to "pendular" structures. The second goal is to investigate the effectiveness of the use of viscous dampers (as compared with traditional lateral-resisting stiff braces) for the seismic design of precast not moment-resisting concrete structures.

Performance based optimal seismic retrofitting of yielding plane frames using added viscous damping

  • Lavan, O.;Levy, R.
    • Earthquakes and Structures
    • /
    • v.1 no.3
    • /
    • pp.307-326
    • /
    • 2010
  • This paper is concerned with the optimal seismic design of added viscous dampers in yielding plane frames. The total added damping is minimized for allowable values of local performance indices under the excitation of an ensemble of ground motions in both regular and irregular structures. The local performance indices are taken as the maximal inter-story drift of each story and/or the normalized hysteretic energy dissipated at each of the plastic hinges. Gradients of the constraints with respect to the design variables (damping coefficients) are derived, via optimal control theory, to enable an efficient first order optimization scheme to be used for the solution of the problem. An example of a ten story three bay frame is presented. This example reveals the following 'fully stressed characteristics' of the optimal solution: damping is assigned only to stories for which the local performance index has reached the allowable value. This may enable the application of efficient and practical analysis/redesign type methods for the optimal design of viscous dampers in yielding plane frames.

Design of supplemental viscous dampers in inelastic SDOF system based on improved capacity spectrum method

  • Li, Bo;Liang, Xing-Wen
    • Structural Engineering and Mechanics
    • /
    • v.27 no.5
    • /
    • pp.541-554
    • /
    • 2007
  • A simplified yet effective design procedure for viscous dampers was presented based on improved capacity spectrum method in the context of performance-based seismic design. The amount of added viscous damping required to meet a given performance objective was evaluated from the difference between the total demand for effective damping and inherent damping plus equivalent damping resulting from hysteretic deformation of system. Application of the method is illustrated by means of two examples, using Chinese design response spectrum and mean response spectrum. Nonlinear dynamic analysis results indicate that the maximum displacements of structures installed with supplemental dampers designed in accordance with the proposed method agree well with the given target displacements. The advantage of the presented procedure over the conventional iterative design method is also highlighted.

Stochastic optimum design criterion of added viscous dampers for buildings seismic protection

  • Marano, Giuseppe Carlo;Trentadue, Francesco;Greco, Rita
    • Structural Engineering and Mechanics
    • /
    • v.25 no.1
    • /
    • pp.21-37
    • /
    • 2007
  • In this study a stochastic approach for linear viscous dampers design adopted for seismic protection of buildings is developed. Devices optimal placement into the main structure and their mechanical parameters are attained by means of a reliability-based optimum design criterion, in which an objective function (O.F.) is minimized, subject to a stochastic constraint. The seismic input is modelled by a non stationary modulated Kanai Tajimi filtered stochastic process. Building is represented by means of a plane shear type frame model. The selected criterion for the optimization searches the minimum of the O.F., here assumed to be the cost of the seismic protection, i.e., assumed proportional to the sum of added dampings of each device. The stochastic constraint limits a suitable approximated measure of the structure failure probability, here associated to the maximum interstorey drift crossing over a given threshold limit, related, according with modern Technical Codes, to the required damage control.

Strategic width-wise arrangement of viscous dampers in steel buildings under strong earthquakes

  • Huang, Xiameng
    • Earthquakes and Structures
    • /
    • v.20 no.2
    • /
    • pp.225-238
    • /
    • 2021
  • Supplemental passive dampers are widely employed to improve the structural performance of buildings under seismic excitations. Nevertheless, the added damping could be counter-productive if the axial forces induced by the damper reaction forces are not routed properly in the columns. A few researchers engaged to optimize the width-wise damper arrangement to improve the delivered path of the axial column forces. However, most of these studies are limited under the design-based seismic level and few of them has evaluated the collapse performance of buildings under strong earthquakes. In this paper, the strategic width-wise placement method of viscous dampers is explored regarding the building performance under collapse state. Two realistic steel buildings with different storeys are modelled and compared to explore higher mode effects. Each building is designed with four different damper arrangement scenarios based on a classic damper distribution method. Both a far-fault and a near-fault seismic environment are considered for the buildings. Incremental Dynamic Analysis (IDA) is performed to evaluate the probability of collapse and the plastic mechanism of the retrofitted steel buildings.

Inserting the mass proportional damping (MPD) system in a concrete shear-type structure

  • Silvestri, Stefano;Trombetti, Tomaso;Ceccoli, Claudio
    • Structural Engineering and Mechanics
    • /
    • v.16 no.2
    • /
    • pp.177-193
    • /
    • 2003
  • This paper presents an illustrative example of the advantages offered by inserting added viscous dampers into shear-type structures in accordance with a special scheme based upon the mass proportional damping (MPD) component of the Rayleigh viscous damping matrix. In previous works developed by the authors, it has been widely shown that, within the class of Rayleigh damped systems and under the "equal total cost" constraint, the MPD system provides best overall performance both in terms of minimising top-storey mean square response to a white noise stochastic input and maximising the weighted average of modal damping ratios. A numerical verification of the advantages offered by the application of MPD systems to a realistic structure is presented herein with reference to a 4-storey reinforced-concrete frame. The dynamic response of the frame subjected to both stochastic inputs and several recorded earthquake ground motions is here analysed in detail. The results confirm the good dissipative properties of MPD systems and indicate that this is achieved at the expense of relatively small damping forces.

Modal Characteristics of a Structure with Stiffness and Damping Eccentricit (강성 및 감쇠 비대칭 구조물의 모드 특성)

  • 김진구;방성혁
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.3
    • /
    • pp.421-432
    • /
    • 2002
  • In this study the modal characteristics and responses of an asymmetric structure with added viscoelastic dampers were investigated for design parameters such as eccentricity of stiffness and added dampers, the loss factor of the damping materials used. For modal characteristics, variation of the quantities such as natural frequencies, modal damping ratios, modal participation factors, and dynamic amplification factors were observed, and displacements at flexible and stiff edges, and at center of mass were obtained. Based on the results, the problem of the optimum damper distribution to minimize the torsional effects was addressed, and the proposed method for optimum damper distribution was applied to a multi-story structure to verify the applicability Finally the effect of viscous and viscoelastic dampers were compared by varying the loss factor of the viscoelastic material.

Design of Added Dampers for Retrofit of Asymmetric Nonlinear Structures (비대칭$\cdot$비탄성구조물의 지진거동 개선을 위한 감쇠기 설계)

  • 김진구;방성혁
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.335-340
    • /
    • 2002
  • In this study procedure for finding out additional viscous damping required to meet a performance target of an asymmetric nonlinear structure is developed based on the design concept of Pauly. The behavior of an asymmetric nonlinear structure after yielding is investigated. Finally the required amount of equivalent damping is obtained using the direct-displacement-based design method without carrying out time-consuming nonlinear dynamic time history analysis.

  • PDF

An evolutionary algorithm for optimal damper placement to minimize interstorey-drift transfer function in shear building

  • Fujita, Kohei;Yamamoto, Kaoru;Takewaki, Izuru
    • Earthquakes and Structures
    • /
    • v.1 no.3
    • /
    • pp.289-306
    • /
    • 2010
  • A gradient-based evolutionary optimization methodology is presented for finding the optimal design of viscous dampers to minimize an objective function defined for a linear multi-storey structure. The maximum value along height of the transfer function amplitudes for the interstorey drifts is taken as the objective function. Since the ground motion includes various uncertainties, the optimal damper placement may be different depending on the ground motion used for design. Furthermore, the transfer function treated as the objective function depends on the properties of structural parameters and added dampers. This implies that a more robust damper design is desired. A reliable and robust damping design system against any unpredictable ground motions can be provided by minimizing the maximum transfer function. Such design system is proposed in this paper.