• Title/Summary/Keyword: adaptive weighted regression

Search Result 6, Processing Time 0.017 seconds

An Adaptive Weighted Regression and Guided Filter Hybrid Method for Hyperspectral Pansharpening

  • Dong, Wenqian;Xiao, Song
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.1
    • /
    • pp.327-346
    • /
    • 2019
  • The goal of hyperspectral pansharpening is to combine a hyperspectral image (HSI) with a panchromatic image (PANI) derived from the same scene to obtain a single fused image. In this paper, a new hyperspectral pansharpening approach using adaptive weighted regression and guided filter is proposed. First, the intensity information (INT) of the HSI is obtained by the adaptive weighted regression algorithm. Especially, the optimization formula is solved to obtain the closed solution to reduce the calculation amount. Then, the proposed method proposes a new way to obtain the sufficient spatial information from the PANI and INT by guided filtering. Finally, the fused HSI is obtained by adding the extracted spatial information to the interpolated HSI. Experimental results demonstrate that the proposed approach achieves better property in preserving the spectral information as well as enhancing the spatial detail compared with other excellent approaches in visual interpretation and objective fusion metrics.

Locally adaptive intelligent interpolation for population distribution modeling using pre-classified land cover data and geographically weighted regression (지표피복 데이터와 지리가중회귀모형을 이용한 인구분포 추정에 관한 연구)

  • Kim, Hwahwan
    • Journal of the Korean association of regional geographers
    • /
    • v.22 no.1
    • /
    • pp.251-266
    • /
    • 2016
  • Intelligent interpolation methods such as dasymetric mapping are considered to be the best way to disaggregate zone-based population data by observing and utilizing the internal variation within each source zone. This research reviews the advantages and problems of the dasymetric mapping method, and presents a geographically weighted regression (GWR) based method to take into consideration the spatial heterogeneity of population density - land cover relationship. The locally adaptive intelligent interpolation method is able to make use of readily available ancillary information in the public domain without the need for additional data processing. In the case study, we use the preclassified National Land Cover Dataset 2011 to test the performance of the proposed method (i.e. the GWR-based multi-class dasymetric method) compared to four other popular population estimation methods (i.e. areal weighting interpolation, pycnophylactic interpolation, binary dasymetric method, and globally fitted ordinary least squares (OLS) based multi-class dasymetric method). The GWR-based multi-class dasymetric method outperforms all other methods. It is attributed to the fact that spatial heterogeneity is accounted for in the process of determining density parameters for land cover classes.

  • PDF

Performance Improvement of General Regression Neural Network Using Principal Component Analysis (주요성분분석에 의한 일반회귀 신경망의 성능개선)

  • Cho, Yong-Hyun
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.11
    • /
    • pp.3408-3416
    • /
    • 2000
  • This paper proposes an efficient method for improving the performance of a general regression neural network by using the feature to the independent variables as the center for partern-layer neurons. The adaptive principal component analysis is applied for extracting, efficiently the fcarures by reducing the dimension of given independent variables. In can acluevc a supertor property of the principal component analysis that converts input data into set of statistically independent features and the general regression neuralnetwork, espedtively. The proposed general regression neural network has been applied to regress the Solow's economy(2-independent variable set) and the wie elephone(1-independent vanable set). The simulation results show that the proposed meural networks have better performances of the regressionfor the lest data, in comparison with those using the means or the weighted means of independent variables. Also,it is affected less by the number of neurons and the scope of the smoothing factor.

  • PDF

Projecting the Potential Distribution of Abies koreana in Korea Under the Climate Change Based on RCP Scenarios (RCP 기후변화 시나리오에 따른 우리나라 구상나무 잠재 분포 변화 예측)

  • Koo, Kyung Ah;Kim, Jaeuk;Kong, Woo-seok;Jung, Huicheul;Kim, Geunhan
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.19 no.6
    • /
    • pp.19-30
    • /
    • 2016
  • The projection of climate-related range shift is critical information for conservation planning of Korean fir (Abies koreana E. H. Wilson). We first modeled the distribution of Korean fir under current climate condition using five single-model species distribution models (SDMs) and the pre-evaluation weighted ensemble method and then predicted the distributions under future climate conditions projected with HadGEM2-AO under four $CO_2$ emission scenarios, the Representative Concentration Pathways (RCP) 2.6, 4.5, 6.0 and 8.5. We also investigated the predictive uncertainty stemming from five individual algorithms and four $CO_2$ emission scenarios for better interpretation of SDM projections. Five individual algorithms were Generalized linear model (GLM), Generalized additive model (GAM), Multivariate adaptive regression splines (MARS), Generalized boosted model (GBM) and Random forest (RF). The results showed high variations of model performances among individual SDMs and the wide range of diverging predictions of future distributions of Korean fir in response to RCPs. The ensemble model presented the highest predictive accuracy (TSS = 0.97, AUC = 0.99) and predicted that the climate habitat suitability of Korean fir would increase under climate changes. Accordingly, the fir distribution could expand under future climate conditions. Increasing precipitation may account for increases in the distribution of Korean fir. Increasing precipitation compensates the negative effects of increasing temperature. However, the future distribution of Korean fir is also affected by other ecological processes, such as interactions with co-existing species, adaptation and dispersal limitation, and other environmental factors, such as extreme weather events and land-use changes. Therefore, we need further ecological research and to develop mechanistic and process-based distribution models for improving the predictive accuracy.

VM Scheduling for Efficient Dynamically Migrated Virtual Machines (VMS-EDMVM) in Cloud Computing Environment

  • Supreeth, S.;Patil, Kirankumari
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.6
    • /
    • pp.1892-1912
    • /
    • 2022
  • With the massive demand and growth of cloud computing, virtualization plays an important role in providing services to end-users efficiently. However, with the increase in services over Cloud Computing, it is becoming more challenging to manage and run multiple Virtual Machines (VMs) in Cloud Computing because of excessive power consumption. It is thus important to overcome these challenges by adopting an efficient technique to manage and monitor the status of VMs in a cloud environment. Reduction of power/energy consumption can be done by managing VMs more effectively in the datacenters of the cloud environment by switching between the active and inactive states of a VM. As a result, energy consumption reduces carbon emissions, leading to green cloud computing. The proposed Efficient Dynamic VM Scheduling approach minimizes Service Level Agreement (SLA) violations and manages VM migration by lowering the energy consumption effectively along with the balanced load. In the proposed work, VM Scheduling for Efficient Dynamically Migrated VM (VMS-EDMVM) approach first detects the over-utilized host using the Modified Weighted Linear Regression (MWLR) algorithm and along with the dynamic utilization model for an underutilized host. Maximum Power Reduction and Reduced Time (MPRRT) approach has been developed for the VM selection followed by a two-phase Best-Fit CPU, BW (BFCB) VM Scheduling mechanism which is simulated in CloudSim based on the adaptive utilization threshold base. The proposed work achieved a Power consumption of 108.45 kWh, and the total SLA violation was 0.1%. The VM migration count was reduced to 2,202 times, revealing better performance as compared to other methods mentioned in this paper.

Infrared Image Sharpness Enhancement Method Using Super-resolution Based on Adaptive Dynamic Range Coding and Fusion with Visible Image (적외선 영상 선명도 개선을 위한 ADRC 기반 초고해상도 기법 및 가시광 영상과의 융합 기법)

  • Kim, Yong Jun;Song, Byung Cheol
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.11
    • /
    • pp.73-81
    • /
    • 2016
  • In general, infrared images have less sharpness and image details than visible images. So, the prior image upscaling methods are not effective in the infrared images. In order to solve this problem, this paper proposes an algorithm which initially up-scales an input infrared (IR) image by using adaptive dynamic range encoding (ADRC)-based super-resolution (SR) method, and then fuses the result with the corresponding visible images. The proposed algorithm consists of a up-scaling phase and a fusion phase. First, an input IR image is up-scaled by the proposed ADRC-based SR algorithm. In the dictionary learning stage of this up-scaling phase, so-called 'pre-emphasis' processing is applied to training-purpose high-resolution images, hence better sharpness is achieved. In the following fusion phase, high-frequency information is extracted from the visible image corresponding to the IR image, and it is adaptively weighted according to the complexity of the IR image. Finally, a up-scaled IR image is obtained by adding the processed high-frequency information to the up-scaled IR image. The experimental results show than the proposed algorithm provides better results than the state-of-the-art SR, i.e., anchored neighborhood regression (A+) algorithm. For example, in terms of just noticeable blur (JNB), the proposed algorithm shows higher value by 0.2184 than the A+. Also, the proposed algorithm outperforms the previous works even in terms of subjective visual quality.