• Title/Summary/Keyword: adaptive unstructured grids

Search Result 7, Processing Time 0.017 seconds

HIGH-ORDER ADAPTIVE-GRID METHOD FOR THE ANALYSIS OF UNSTEADY COMPRESSIBLE FLOW (비정상 압축성 유동 해석을 위한 고차 정확도 적응 격자 기법의 연구)

  • Chang, S.M.;Morris, Philip J.
    • Journal of computational fluids engineering
    • /
    • v.13 no.3
    • /
    • pp.69-78
    • /
    • 2008
  • The high-order numerical method based on the adaptive mesh refinement(AMR) on the quadrilateral unstructured grids has been developed in this paper. This adaptive-grid method, originally developed with MUSCL-TVD scheme, is now extended to the WENO (weighted essentially no-oscillatory) scheme with the Runge-Kutta time integration of fifth order in spatial and temporal accuracy. The multidimensional interpolation was studied in the preliminary research, which allows us to maintain the same order of accuracy for the computation of numerical flux between two adjacent cells of different levels. Some standard benchmark tests are done to validate this method for checking the overall capacity and efficiency of the present adaptive-grid technique.

MULTIDIMENSIONAL INTERPOLATIONS FOR THE HIGH ORDER SCHEMES IN ADAPTIVE GRIDS (적응 격자 고차 해상도 해법을 위한 다차원 내삽법)

  • Chang, S.M.;Morris, P.J.
    • Journal of computational fluids engineering
    • /
    • v.11 no.4 s.35
    • /
    • pp.39-47
    • /
    • 2006
  • In this paper, the authors developed a multidimensional interpolation method inside a finite volume cell in the computation of high-order accurate numerical flux such as the fifth order WEND (weighted essentially non-oscillatory) scheme. This numerical method starts from a simple Taylor series expansion in a proper spatial order of accuracy, and the WEND filter is used for the reconstruction of sharp nonlinear waves like shocks in the compressible flow. Two kinds of interpolations are developed: one is for the cell-averaged values of conservative variables divided in one mother cell (Type 1), and the other is for the vertex values in the individual cells (Type 2). The result of the present study can be directly used to the cell refinement as well as the convective flux between finer and coarser cells in the Cartesian adaptive grid system (Type 1) and to the post-processing as well as the viscous flux in the Navier-Stokes equations on any types of structured and unstructured grids (Type 2).

Computation of the Euler Equations on the Adaptive Cartesian Grids Using the Point Gauss-Seidel Method (적응형 Cartesian 격자기법에서 Point Gauss-Seidel 기법을 사주한 Euler 방정식 계산)

  • Lee J. G.;Chang K. S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2001.05a
    • /
    • pp.93-98
    • /
    • 2001
  • An adaptive Cartesian grid method having the best elements of structured, unstructured, and Cartesian grids is developed to solve the steady two-dimensional Euler equations. The solver is based on a cell-centered finite-volume method with Roe's flux-difference splitting and implicit point Gauss-seidel time integration method. Calculations of several compressible flows are carried out to show the efficiency of the developed computer code. The results were generally in good agreements with existing data in the literature and the developed code has the good ability to capture important feature of the flows.

  • PDF

Morphological Transformation of Shock Waves Behind a Flat Plate

  • Chang, Se-Nyong;Lee, Soogab;Chang, Keun-Shik
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.665-670
    • /
    • 2001
  • The interaction of a travelling shock with the shear layer of a flat plate is studied computationally. The Euler and Navier-Stokes equations are solved numerically on quadrilateral unstructured adaptive grids. The flat plate is installed horizontally on the central axis of a shock tube. The shear layer is first created by two shock waves at different speeds splitted by a flat plate. A series of small vortices is developed as a consequence in the shear layer. The shock wave reflected at the end wall impinges the shear layer. The complicated shock dynamics in the evolution to the pseudo-steady state is represented with the morphological transformation of a planar shock into an oblique shock.

  • PDF

Adaptive Triangular Finite Element Method for Compressible Navier - Stokes Flows (삼각형 적응격자 유한요소법을 이용한 압축성 Navier-Stokes 유동의 해석)

  • Im Y. H.;Chang K. S.
    • Journal of computational fluids engineering
    • /
    • v.1 no.1
    • /
    • pp.88-97
    • /
    • 1996
  • This paper treats an adaptive finite-element method for the viscous compressible flow governed by Navier-Stokes equations in two dimensions. The numerical algorithm is the two-step Taylor-Galerkin mettled using unstructured triangular grids. To increase accuracy and stability, combined moving node method and grid refinement method have been used for grid adaption. Validation of the present algorithm has been made by comparing the present computational results with the existing experimental data and other numerical solutions. Four benchmark problems are solved for demonstration of the present numerical approach. They include a subsonic flow over a flat plate, the Carter flat plate problem, a laminar shock-boundary layer interaction. and finally a laminar flow around NACA0012 airfoil at zero angle of attack and free stream Mach number of 0.85. The results indicates that the present adaptive triangular grid method is accurate and useful for laminar viscous flow calculations.

  • PDF

Blast Damage Assessment to a Modern Steel Structures

  • Mestreau Eric;Baum Joseph D.;Charman Chuck;Lee Seung;Sohn Young
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.05a
    • /
    • pp.292-295
    • /
    • 2006
  • The terrorist attack of September $11^{th}$ 2001 has enforced a new examination of the response of modern steel structures, such as those found in large warehouses, auditoriums and airport terminals, to terrorist bomb attack. The effort described in this paper assesses the potential damage to such a newly designed structure form a medium-size car bomb. The structure is mostly composed of a lightweight complex beam structure with large windows and skylights piercing through a corrugated roof. The structural response to the terrorist attack requires the modelling of various physics phenomena including bomb detonation, blast wave propagation, reflections, and refractions and resulting blast impact on the structure. Hence, a fluid/structure coupled methodology is used to perform the assessment.

  • PDF

Triangular Grid Homogenization Using Local Improvement Method (국소개선기법을 이용한 삼각격자 균질화)

  • Choi, Hyung-Il;Jun, Sang-Wook;Lee, Dong-Ho;Lee, Do-Hyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.8
    • /
    • pp.1-7
    • /
    • 2005
  • This paper proposes a local improvement method that combines extended topological clean up and optimization-based smoothing for homogenizing triangular grid system. First extended topological clean up procedures are applied to improve the connectivities of grid elements. Then, local optimization-based smoothing is performed for maximizing the distortion metric that measures grid quality. Using the local improvement strategy, we implement the grid homogenizations for two triangular grid examples. It is shown that the suggested algorithm improves the quality of the triangular grids to a great degree in an efficient manner and also can be easily applied to the remeshing algorithm in adaptive mesh refinement technique.