• Title/Summary/Keyword: adaptive tuning parameter

Search Result 77, Processing Time 0.023 seconds

A Study on Adaptive Control of AGV using Immune Algorithm (면역알고리즘을 이용한 AGV의 적응제어에 관한 연구)

  • 이영진;최성욱;손주한;이진우;조현철;이권순
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2000.04a
    • /
    • pp.56-63
    • /
    • 2000
  • Abstract - In this paper, an adaptive mechanism based on immune algorithm is designed and it is applied for the autonomous guided vehicle(AGV) driving. When the immune algorithm is applied to the PID controller, there exists the case that the plant is damaged due to the abrupt change of PID parameters since the parameters are adjusted almost randomly. To solve this problem, a neural network is used to model the plant and the parameter tuning of the model is performed by the immune algorithm. After the PID parameters are determined in this off-line manner, these gains are then applied to the plant for the on-line control using immune adaptive algorithm. Moreover, even though the neural network model may not be accurate enough intially, the weighting parameters are adjusted to be accurate through the on-line fine tuning. The computer simulation for the control of steering and speed of AGV is performed. The results show that the proposed controller has better performances than other conventional controllers.

  • PDF

A Study on Driving Control of an Autonomous Guided Vehicle using Humoral Immune Algorithm Adaptive PID Controller based on Neural Network Identifier Technique (신경회로망 동정기법에 기초한 HIA 적응 PID 제어기를 이용한 AGV의 주행제어에 관한 연구)

  • Lee Young Jin;Suh Jin Ho;Lee Kwon Soon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.10
    • /
    • pp.65-77
    • /
    • 2004
  • In this paper, we propose an adaptive mechanism based on immune algorithm and neural network identifier technique. It is also applied fur an autonomous guided vehicle (AGV) system. When the immune algorithm is applied to the PID controller, there exists the case that the plant is damaged due to the abrupt change of PID parameters since the parameters are almost adjusted randomly. To solve this problem, we use the neural network identifier (NNI) technique fur modeling the plant and humoral immune algorithm (HIA) which performs the parameter tuning of the considered model, respectively. After the PID parameters are determined in this off-line manner, these gains are then applied to the plant for the on-line control using an immune adaptive algorithm. Moreover, even though the neural network model may not be accurate enough initially, the weighting parameters are adjusted to be accurate through the on-line fine tuning. Finally, the simulation and experimental result fur the control of steering and speed of AGV system illustrate the validity of the proposed control scheme. These results for the proposed method also show that it has better performance than other conventional controller design methods.

An AGV Driving Control using immune Algorithm Adaptive Controller (면역알고리즘 적응 제어기를 이용한 AGV 주행제어에 관한 연구)

  • Lee, Yeong-Jin;Lee, Gwon-Sun;Lee, Jang-Myeong
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.4
    • /
    • pp.201-212
    • /
    • 2000
  • In this paper, an adaptive mechanism based on immune algorithm is designed and it is applied for the autonomous guided vehicle(AGV) driving. When the immune algorithm is applied to the PID controller, there exists the cast that the plant is damaged due to the abrupt change of PID parameters since the parameters are adjusted almost randomly. To solve this problem, a neural network is used to model the plant and the parameter tuning of the model is performed by the immune algorithm. After the PID parameters are determined in this off-line manner, these gains are then applied to the plant for the on-line control using immune adaptive algorithm. Moreover, even though the neural network model may not be accurate enough intially, the weighting parameters are adjusted to be accurate through the on-line fine tuning. The computer simulation for the control of steering and speed of AGV is performed. The results show that the proposed controller has better performances than other conventional controllers.

  • PDF

A Design of a Robust Self-Tuning Controller in the presence of a Parameter Perturbation and Disturbance (매개 변수 섭동과 외란이 존재하는 강건한 자기 동조 제어기의 설계)

  • Park, Ju-Kwang;Hong, Sun-Hak;Yim, Hwa-Young
    • Proceedings of the KIEE Conference
    • /
    • 1989.11a
    • /
    • pp.426-429
    • /
    • 1989
  • The robust self-tuning controller is designed which is guaranteed the asymptotic regulation and tracking in the presence of a bounded parameter perturbation. The global stability in the presence of a finite noise and disturbance is ensured. The controller has a error driven structure, and involves the common model of a disturbance and reference input in the internal model. The adaptive system tunes the controller parameters such that the quadratic performance index which involves a weighting factor is optimized.

  • PDF

Design of Model Following PID Controller Using Fuzzy Tuner (퍼지 동조기법을 이용한 기준모델 추종 PID제어기의 설계)

  • Hong, Hyug-Gi;Moon, Dong-Wook;Kim, Lark-Kyo;Nam, Moon-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.621-623
    • /
    • 1999
  • In this paper, Model following PID control system, which is combined PID controller with Model Reference Adaptive Controller, is proposed. To decrease complex and much calculation which is produced in tuning process, the tuning method of parameter with fuzzy algorithm is introduced. Fuzzy algorithm isn't used in the form of controller generally much used, but tuner. Experimental results show that proposed controller has the PID parameter be tuned by fuzzy algorithm. Therefore, We expect model following PID to be operated in the real-time control.

  • PDF

Design of a nonlinear Multivariable Self-Tuning PID Controller based on neural network (신경회로망 기반 비선형 다변수 자기동조 PID 제어기의 설계)

  • Cho, Won-Chul
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.6
    • /
    • pp.1-10
    • /
    • 2007
  • This paper presents a direct nonlinear multivariable self-tuning PID controller using neural network which adapts to the changing parameters of the nonlinear multivariable system with noises and time delays. The nonlinear multivariable system is divided linear part and nonlinear part. The linear controller are used the self-tuning PID controller that can combine the simple structure of a PID controllers with the characteristics of a self-tuning controller, which can adapt to changes in the environment. The linear controller parameters are obtained by the recursive least square. And the nonlinear controller parameters are achieved the through the Back-propagation neural network. In order to demonstrate the effectiveness of the proposed algorithm, the computer simulation results are presented to adapt the nonlinear multivariable system with noises and time delays and with changed system parameter after a constant time. The proposed PID type nonlinear multivariable self-tuning method using neural network is effective compared with the conventional direct multivariable adaptive controller using neural network.

Adaptive Approaches on the Sliding Mode Control of Robot Manipulators

  • Park, Jae-Sam;Han, Gueon-San;Ahn, Hyun-Sik;Kim, Do-Hyun
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.1
    • /
    • pp.15-20
    • /
    • 2001
  • In this paper, adaptive algorithms on the sliding model control for robust tracking control of robust manipulators are presented. The presented algorithms use adaption laws for tuning both the sliding mode gain and the thickness of the boundary layer to reject a disconitnuous control input, and to improve the tracking performance. It is shown that the robustness of the developed adaptive algorithms are guaranteed by the sliding mode control law and that the algorithms are globally convergent in the presence of disturbances and modeling uncertainties. Computer simulations are performed for a two-link manipulator, and the results show good properties of the proposed adaptive algorithms under large mainpulator parameter uncertainties and disturbances.

  • PDF

Real-Time Multiple-Parameter Tuning of PPF Controllers for Smart Structures by Genetic Algorithms (유전자 알고리듬을 이용한 지능구조물의 PPF 제어기 실시간 다중변수 조정)

  • Heo, Seok;Kwak, Moon-Kyu
    • Journal of KSNVE
    • /
    • v.11 no.1
    • /
    • pp.147-155
    • /
    • 2001
  • This paper is concerned with the real-time automatic tuning of the multi-input multi-output positive position feedback controllers for smart structures by the genetic algorithms. The genetic algorithms have proven its effectiveness in searching optimal design parameters without falling into local minimums thus rendering globally optimal solutions. The previous real-time algorithm that tunes a single control parameter is extended to tune more parameters of the MIMO PPF controller. We employ the MIMO PPF controller since it can enhance the damping value of a target mode without affecting other modes if tuned properly. Hence, the traditional positive position feedback controller can be used in adaptive fashion in real time. The final form of the MIMO PPF controller results in the centralized control, thus it involves many parameters. The bounds of the control Parameters are estimated from the theoretical model to guarantee the stability. As in the previous research, the digital MIMO PPF control law is downloaded to the DSP chip and a main program, which runs genetic algorithms in real time, updates the parameters of the controller in real time. The experimental frequency response results show that the MIMO PPF controller tuned by GA gives better performance than the theoretically designed PPF. The time response also shows that the GA tuned MIMO PPF controller can suppress vibrations very well.

  • PDF

A Study on Implementation of Immune Algorithm Adaptive Controller for AGV Driving Control (AGV의 주행 제어를 위한 면역 알고리즘 적응 제어기 실현에 관한 연구)

  • 이영진;이진우;손주한;이권순
    • Journal of Korean Port Research
    • /
    • v.14 no.2
    • /
    • pp.187-197
    • /
    • 2000
  • In this paper, an adaptive mechanism based on immune algorithm is designed and it is applied to the driving control of the autonomous guided vehicle(AGV). When the immune algorithm is applied to the PID controller, there exists the case that the plant is damaged by the abrupt change of PID parameters since the parameters are adjusted almost randomly. To solve this problem, a neural network used to model the plant and the parameter tuning of the model is performed by the immune algorithm. After the PID parameters are determined through this off-line manner, these parameters are then applied to the plant for the on-line control using immune adaptive algorithm. Moreover, even though the neural network model may not be accurate enough initially, the weighting parameters are adjusted more accurately through the on-line fine tuning. The experiment for the control of steering and speed of AGV is performed. The results show that the proposed controller provides better performances than other conventional controllers.

  • PDF

Study for Development of the Fabrication System of Brain Model for Surgery Emulation (모의수술용 뇌모형 제작시스템 개발을 위한 연구)

  • 염상원;방재철;엄태준;주영철;김승우;공용해;천인국;김범태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.298-298
    • /
    • 2000
  • This paper presents the optimization technique to analyze the effect of the design parameters of rapid prototyping system for human brain model fabrication. The optimization method considers the functional relationships among the design parameters such as thickness gap, shrink rate, and laser speed that govern the operation of fabrication system. This paper applies a discrete optimization technique as the optimization method to determine the dominant parameter values. Additional study includes manner of complement surface image of ellipse which approximates the brain model using the adaptive slicing and the offset contour. According to the parameters tuning and interaction of effect, more suitable parameter values can be obtained by enhanced 3D brain model fabrication.

  • PDF