• Title/Summary/Keyword: adaptive tuning

Search Result 262, Processing Time 0.029 seconds

Robust Control of Robot Manipulator using Self-Tuning Adaptive Control (자기동조 적응제어기법에 의한 로봇 매니퓰레이터의 강인제어)

  • 뱃길호
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1996.10a
    • /
    • pp.150-155
    • /
    • 1996
  • This paper presents a new approach to the design of self-tuning adaptive control system that is robust to the changing dynamic configuration as well as to the load variation factors using digital signal processors for robot manipulators. TMS3200C50 is used in implementing real-time adaptive control algorithms provide advanced performance for robot manipulator. In this paper an adaptive control scheme is proposed in order to design the pole-placement self-tuning controller which can reject the offset due to any load disturbance without a detailed description of robot dynamics. parameters of discrete-time difference model are estimated by the recursive least-square identification algorithm and controller parameters are detemined by the pole-placement method. Performance of self-tuning adaptive controller is illusrated by the simulation and experiment for a SCARA robot.

  • PDF

Implementation of a Pole-Placement Self-Tuning Adaptive Controller for SCARA Robot Using TMS320C5X Chip (TMS320C5X칩을 사용한 스카라 로봇의 극점 배치 자기동조 적응제어기의 실현)

  • 배길호;한성현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.754-758
    • /
    • 1996
  • This paper presents a new approach to the design of self-tuning adaptive control system that is robust to the changing dynamic configuration as well as to the load variation factors using Digital signal processors for robot manipulators. TMS320C50 is used in implementing real-time adaptive control algorithms to provide advanced performance for robot manipulator, In this paper, an adaptive control scheme is proposed in order to design the pole-placement self-tuning controller which can reject the offset due to any load disturbance without a detailed description of robot dynamics. Parameters of discrete-time difference model are estimated by the recursive least-square identification algorithm, and controller parameters we determined by the pole-placement method. Performance of self-tuning adaptive controller is illusrated by the simulation and experiment for a SCARA robot.

  • PDF

Implementation of a pole-placement self-tuning adaptive controller for SCARA robot using TMS320C5X chip (TMS320C5X칩을 사용한 스카라 로봇의 극점배치 자기동조 적응제어기의 실현)

  • Bae, Gil-Ho;Han, Sung-Hyun;Lee, Min-Chul;Son, Kwon;Lee, Jang-Myung;Lee, Man-Hyung;Kim, Sung-Kwon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.61-64
    • /
    • 1996
  • This paper presents a new approach to the design of self-tuning adaptive control system that is robust to the changing dynamic configuration as well as to the load variation factors using Digital signal processors for robot manipulators. TMS32OC50 is used in implementing real-time adaptive control algorithms to provide advanced performance for robot manipulator. In this paper, an adaptive control scheme is proposed in order to design the pole-placement self-tuning controller which can reject the offset due to any load disturbance without a detailed description of robot dynamics. Parameters of discrete-time difference model are estimated by the recursive least-square identification algorithm, and controller parameters are determined by the pole-placement method. Performance of self-tuning adaptive controller is illustrated by the simulation and experiment for a SCARA robot.

  • PDF

The Design of a Fuzzy Adaptive Controller for the Process Control (공정제어를 위한 퍼지 적응제어기의 설계)

  • Lee Bong Kuk
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.7
    • /
    • pp.31-41
    • /
    • 1993
  • In this paper, a fuzzy adaptive controller is proposed for the process with large delay time and unmodelled dynamics. The fuzzy adaptive controller consists of self tuning controller and fuzzy tuning part. The self tuning controller is designed with the continuous time GMV (generalized minimum variance) using emulator and weighted least square method. It is realized by the hybrid method. The controller has robust characteristics by adapting the inference rule in design parameters. The inference processing is tuned according to the operating point of the process having the nonlinear characteristics considering the practical application. We review the characteristics of the fuzzy adaptive controller through the simulation. The controller is applied to practical electric furnace. As a result, the fuzzy adaptive controller shows the better characteristics than the simple numeric self tuning controller and the PI controller.

  • PDF

Self tuning control with offset elimination for nonminimum phase system (비최소 위상 시스템에 대하여 오프셋(offset) 제거 기능을 가진 자기 동조 제어)

  • 나종래;변증남
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.78-82
    • /
    • 1986
  • In the process control applications of self tuning control, a major concern of the control problem is to handle an offset caused by load disturbances and random steps occuring at random instance of time. Conventionally an integrator is incorperated in the forward path of the controller to eliminate such an offset. But this approach causes a difficulty if the adaptive part of the resultant controller is to be evaluated. In this paper a method of analyzing the adaptive system and improving the offset effect is suggested for a class of referance model method in the self tuning adaptive control system.

  • PDF

A New Auto-Tuning PI Controller by Pattern Recognition (패턴 인식에 의한 새로운 자동조정 PI제어기)

  • Park, Gwi-Tae;Lee, Kee-Sang;Park, Tae-Hong
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.7
    • /
    • pp.696-705
    • /
    • 1991
  • This paper describes the procedures for pre-tuning and re-tuning the gains of PI controller based on output patterns -output error integral- of the unknown process which may not have any information, for example, system order, deadtime, time constant, etc. The key ideas of the proposed adaptive scheme are as follows. The scheme determines the initial gains by using ZNM (Ziegler-Nichols Method) with relay feedback, and then the adaptive algorithms by pattern recognition are introduced for re-runing the PI gains with on-line scheme whenever control conditions are changed. Because, among the various auto-tuning procedures, ANM with relay feedback has the difficulty in re-tuning with on-line and Bristol method has no comment on initial settings and has variables to pre-determine, which makes the algorithm comples, the proposed methods have the combined scheme with above two procedures to recover those problems. And this paper proposes a simple way to determine adaptive constant in Bristol method. To show the validity of the proposed method, an example is illustrated by computer simulation and a laboratory process, heat exchanger, is experimented.

A Design of Adaptive Impedance Tuning Circuit for UHF-Band Using λ/4 Transmission Line and π-Network (λ/4 전송 선로와 π-네트워크를 이용한 UHF-대역 적응형 임피던스 정합 회로 설계)

  • Hwang, Soo-Sul;Hong, Sung-Yong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.3
    • /
    • pp.367-376
    • /
    • 2012
  • This paper describes a Adaptive Impedance Tuning Circuit which can be adaptively tuned between circuit's characteristic impedance and the arbitrary load impedance. The Adaptive Impedance Tuning Circuit is consisted of such parts as mismatch sensor, impedance tuner and tuning algorithm. Each parts's design methods proposed in other papers are compared with their advantages and disadvantages. And we propose simple design method for Adaptive Impedance Tuning Circuit using a ${\lambda}/4$ transmission line and ${\pi}$-network. Calculation formulas and selection algorithm from calculated values of a complex load impedance are proposed and simulation using induced calculation formulas and selection algorithm is performed. Simulation results show good agreement with theoretical predictions.

A Study on the Adaptive Active Noise Control Using the Self-tuning feedback controller (자기동조 피이드백 제어기를 이용한 적응 능동소음제어에 관한 연구)

  • Shin, Joon;Lee, Tae-Yeon;Kim, Heung-Seob;Jo, Seong-Oh;Bang, Seung-Hyun;Oh, Jae-Eung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1993.04a
    • /
    • pp.140-146
    • /
    • 1993
  • Active noise control uses the intentional superposition of acoustic waves to create a destructive interference pattern such that a reduction of the unwanted sound occurs. In active noise control system the choice of a control structure and design of the controller are the main issues of concern. In real acoustic fields there are a vast number of noise sources with time-varying nature and the characteristics of transducers and the geometric set-up of control system are subject to change. Accordingly the control system should be designed to adapt such circumstances so that required level of performance is maintained. In this paper, the adaptive control algorithm for self-tuning adaptive controller is presented for the application in active noise control system. Self-tuning is a direct integration of identification and controller design algorithm in such a manner that the two processes proceed sequentially. The least mean square algorithm was used for the identification schemes and adaptive weighted minimum variance control algorithm was applied for self-tuning controller. Computer simulation results for self-tuning feedback controller are presented. And simulation results was shown to be useful for the situation in which the periodic noise sources act on the acoustic field.

  • PDF

Auto-Tuning PI Control By Pattern Recognition (패턴 인식에 의한 Auto-Tuning PI 제어)

  • Park, Gwi-Tae;Lee, Gee-Sang;Kim, Sung-Ho;Park, Tae-Hong;Lee, Dong-Won
    • Proceedings of the KIEE Conference
    • /
    • 1990.07a
    • /
    • pp.510-513
    • /
    • 1990
  • This paper describes the procedures for pre-tuning and re-tuning of the PI controller to specifications on patterns of output response. The key ideas of the proposed adaptive scheme are as follows. The relay feedback is adopted first for pre-tuning and the adaptive algorithms by the pattern recognition are introduced for re-tuning procedure to retune the gains whenever control conditions are changed. The proposed scheme was applied to the experimental laboratory process, heat exchanger.

  • PDF

Sensorless Self-Tuning Adaptive Control of Nonlinear Modeled DC Motors Using DSP (DSP를 이용한 비선형 모델을 갖는 직류 전동기의 센서없는 자기동조 적응제어)

  • 김윤호;국윤상;유연식
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.9 no.6
    • /
    • pp.49-56
    • /
    • 1995
  • In this study, self-tuning adaptive control using state observer is developed. Self-tuning adaptive controller that estimates the parameters of the system in real time and generates the optimal control signals has robust characteristic about varying load and external disturbances. In addition, state observer without sensors is applied, thus the control can be performed more quickly and exactly. Since chopper is used commonly in practical drives, the characteristics of the chopper are included in state observer algorithm, which, in turn, makes the system exact estimation. Since series type DC motor has nonlinear models, linearizing approach are investigated. to realize the proposed algorithm it requires fast calculation in real time. TMS320C31, digital signal processor, is applied to realized the adaptive control algorithms.

  • PDF