• Title/Summary/Keyword: adaptive step size

Search Result 197, Processing Time 0.024 seconds

A Performance Evaluation of FC-MMA Adaptive Equalization Algorithm by Step Size (스텝 크기에 의한 FC-MMA 적응 등화 알고리즘의 성능 평가)

  • Lim, Seung-Gag
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.5
    • /
    • pp.27-32
    • /
    • 2021
  • This paper evaluates the equalization performance of FC-MMA adaptive equalization algorithm by the fixed step size that is used for the minimization of the intersymbol interference which occurs in the time dispersive communication channel. The FC-MMA has a fast convergence speed in order to adapts the new environment more rapidly in case of the time varying charateristics and the abnormal situation like as outage of the communication channel. But the algorithms operates in adative method, convegence speed is depend on fixed step size for adaptation. For this situation, its performance was evaluated by changing the step size value, the residual isi and maximum distortion and MSE performance index which means the convergence characteristics are widely adapted in the adaptive equalizer, SER were applied. As a result of computer simulation, the large step size can improves the convergence speed for reaching the steady state, but has a poor performance compared to small step size in residual values after steady state. The research result shows that the FC-MMA algorithm is applied the large step size for rapidly reaching the steady state in initial time, then adjust the small step size after reaching the steady state for reducing the residual values for equalization.

Variable Step Size LMS Algorithm Using the Error Difference (오류 차이를 활용한 가변 스텝 사이즈 LMS 알고리즘)

  • Woo, Hong-Chae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.245-250
    • /
    • 2009
  • In communications and signal processing area, a number of least mean square adaptive algorithms have been used because of simplicity and robustness. However the LMS algorithm is known to have slow and non-uniform convergence. Various variable step size LMS adaptive algorithms have been introduced and researched to speed up the convergence rate. A variable step size LMS algorithm using the error difference for updating the step size is proposed. Compared with other algorithms, simulation results show that the proposed LMS algorithm has a fast convergence. The theoretical performance of the proposed algorithm is also analyzed for the steady state.

A Performance Evaluation of VSS-MMA Adaptive Equalization Algorithm using the Non-Linear Fuction of Error Signal for QAM System (QAM 시스템에서 오차 신호의 비선형 함수를 이용한 VSS-MMA 적응 등화 알고리즘의 성능 평가)

  • Lim, Seung-Gag
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.1
    • /
    • pp.131-137
    • /
    • 2015
  • This paper relates with the VSS-MMA (Variable Step Size-Multiple Modulus Algorithm) adaptive equalization algorithm which is possible to improving the equalization performance by use the nonlinear fuction of error signal in the MMA adaptive equalization algorithm that are used for the minimization of the intersymbol interference due to the distortion which occurs in the time dispersive channel for the transmission of QAM signal in the system.. In the conventional MMA, we obtains the tap coefficient of adaptive equalizer using the fixed step size, but in the VSS-MMA, we obtains the tap coefficient of adaptive equalizer using the variable step size based on a nonlinear function of error signal. By adapting the variable step size, it was confirmed that the improved equalization performance were obtained by computer simulation. For this, the equalizer output signal constellation, residual isi, maximum distortion, MSE and SER were used in the performace index.

An Adaptive Algorithm for the Quantization Step Size Control of MPEG-2

  • Cho, Nam-Ik
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.6
    • /
    • pp.138-145
    • /
    • 1997
  • This paper proposes an adaptive algorithm for the quantization step size control of MPEG-2, using the information obtained from the previously encoded picture. Before quantizing the DCT coefficients, the properties of reconstruction error of each macro block (MB) is predicted from the previous frame. For the prediction of the error of current MB, a block with the size of MB in the previous frame are chosen by use of the motion vector. Since the original and reconstructed images of the previous frame are available in the encoder, we can calculate the reconstruction error of this block. This error is considered as the expected error of the current MB if it is quantized with the same step size and bit rate. Comparing the error of the MB with the average of overall MBs, if it is larger than the average, small step size is given for this MB, and vice versa. As a result, the error distribution of the MB is more concentrated to the average, giving low variance and improved image quality. Especially for the low bit application, the proposed algorithm gives much smaller error variance and higher PSNR compared to TM5 (test model 5).

  • PDF

A Hybrid Automatic Focusing Method with Gaussian Interpolation and Adaptive Step Size (가우시안보간과 적응스텝크기를 적용한 하이브리드 오토포커싱)

  • Moon, Soon Hwan;Kim, Gyung Bum
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.1
    • /
    • pp.51-55
    • /
    • 2014
  • In this paper, an hybrid automatic focusing method has been proposed for speedy and reliable measurement and inspection in industry. It can improve reliability of focusing position by using not a focusing measure but the hybrid one that is incorporated with sobel operator and auto-correlation. Also, it can not only reduce control time of focusing position using adaptive step size, but also improve accuracy of focusing position by gaussian interpolation. Its performance is verified by experiments. It is expected that it can apply to optical system for measurement and inspection in industry fields.

The New Variable Step-size Algorithm Adaptive Lattice Structure for Echo Cancellation

  • Benjangkaprasert, Chawalit;Sukhumalwong, Sethawuit;Teerasakworakun, Sirirat;Janchitrapongvej, Kanok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2090-2092
    • /
    • 2003
  • Adaptive algorithms are widely used for various applications. One challenging application is an echo canceller in the long distance telephony network. This paper proposes the new variable step-size algorithm for adaptive lattice structure for echo cancellation. The new algorithm is using power of the output signal and the error signal to controlled the step of adaptation process. By this technique, the proposed algorithm is an excellent and effective in good stability. Performance comparison of the proposed algorithm and the other algorithm is made through simulation results.

  • PDF

Variable Step Size Adaptive Algorithm using Instantaneous Absolute Value Based on System Generator (시스템 제너레이터 환경에서 순시 절대값을 이용한 가변스텝사이즈 적응알고리즘)

  • Lee, Chae-Wook;Ryu, Jeong-Tak
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.21 no.3
    • /
    • pp.1-6
    • /
    • 2016
  • As the convergence speed of time domain adaptive algorithm on the LMS(Least Mean Square) becomes slow when eigen value distribution width is spread, So variable step size algorithm is used widely. But it needs a lot of calculation load. In this paper we consider new algorithm, which can reduce calculations and improve convergence speed, uses instantaneous absolute value of average noise signal adapting the exponential function. For the performance of proposed algorithm is tested and simulated to system generator. As the result we show the variable step size adaptive algorithm in proportion to instantaneous absolute value is more stable and efficient than others.

Performance Improvement of MSAGF-MMA Adaptive Blind Equalization Using Multiple Step-Size LMS (다중 스텝 크기 LMS를 이용한 MSAGF-MMA 적응 블라인드 등화의 성능 개선)

  • Jeong, Young-Hwa
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.4
    • /
    • pp.83-89
    • /
    • 2013
  • An adaptive blind equalization is a technique using to minimize the Inter-symbol Interference occurred on a communication channel in the transmission of the high speed digital data. In this paper, we propose a blind equalization more improving performance of the conventional MSAGF-MMA adaptive blind equalization algorithm by applying a multiple step size. This algorithm apply a LMS algorithm with a several step size according to each region divided by absolute values of decision-directed error to MSAGF-MMA. By computer simulation, it is confirmed that the proposed algorithm has a performance highly enhanced in terms of a convergence speed, a residual ISI and a residual error and an ensemble averaged MSE in a steady status compared with MMA and MSAGF-MMA.

Optimal Variable Step Size for Simplified SAP Algorithm with Critical Polyphase Decomposition (임계 다위상 분해기법이 적용된 SAP 알고리즘을 위한 최적 가변 스텝사이즈)

  • Heo, Gyeongyong;Choi, Hun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.11
    • /
    • pp.1545-1550
    • /
    • 2021
  • We propose an optimal variable step size adjustment method for the simplified subband affine projection algorithm (Simplified SAP; SSAP) in a subband structure based on a polyphase decomposition technique. The proposed method provides an optimal step size derived to minimize the mean square deviation(MSD) at the time of updating the coefficients of the subband adaptive filter. Application of the proposed optimal step size in the SSAP algorithm using colored input signals ensures fast convergence speed and small steady-state error. The results of computer simulations performed using AR(2) signals and real voices as input signals prove the validity of the proposed optimal step size for the SSAP algorithm. Also, the simulation results show that the proposed algorithm has a faster convergence rate and good steady-state error compared to the existing other adaptive algorithms.

The Improvement of Computational Efficiency in KIM by an Adaptive Time-step Algorithm (적응시간 간격 알고리즘을 이용한 KIM의 계산 효율성 개선)

  • Hyun Nam;Suk-Jin Choi
    • Atmosphere
    • /
    • v.33 no.4
    • /
    • pp.331-341
    • /
    • 2023
  • A numerical forecasting models usually predict future states by performing time integration considering fixed static time-steps. A time-step that is too long can cause model instability and failure of forecast simulation, and a time-step that is too short can cause unnecessary time integration calculations. Thus, in numerical models, the time-step size can be determined by the CFL (Courant-Friedrichs-Lewy)-condition, and this condition acts as a necessary condition for finding a numerical solution. A static time-step is defined as using the same fixed time-step for time integration. On the other hand, applying a different time-step for each integration while guaranteeing the stability of the solution in time advancement is called an adaptive time-step. The adaptive time-step algorithm is a method of presenting the maximum usable time-step suitable for each integration based on the CFL-condition for the adaptive time-step. In this paper, the adaptive time-step algorithm is applied for the Korean Integrated Model (KIM) to determine suitable parameters used for the adaptive time-step algorithm through the monthly verifications of 10-day simulations (during January and July 2017) at about 12 km resolution. By comparing the numerical results obtained by applying the 25 second static time-step to KIM in Supercomputer 5 (Nurion), it shows similar results in terms of forecast quality, presents the maximum available time-step for each integration, and improves the calculation efficiency by reducing the number of total time integrations by 19%.