• Title/Summary/Keyword: adaptive sensor control

Search Result 278, Processing Time 0.032 seconds

Adaptive Time Delay Compensation Process in Networked Control System

  • Kim, Yong-Gil;Moon, Kyung-Il
    • International journal of advanced smart convergence
    • /
    • v.5 no.1
    • /
    • pp.34-46
    • /
    • 2016
  • Networked Control System (NCS) has evolved in the past decade through the advances in communication technology. The problems involved in NCS are broadly classified into two categories namely network issues due to network and control performance due to system network. The network problems are related to bandwidth allocation, scheduling and network security, and the control problems deal with stability analysis and delay compensation. Various delays with variable length occur due to sharing a common network medium. Though most delays are very less and mostly neglected, the network induced delay is significant. It occurs when sensors, actuators, and controllers exchange data packet across the communication network. Networked induced delay arises from sensor to controller and controller to actuator. This paper presents an adaptive delay compensation process for efficient control. Though Smith predictor has been commonly used as dead time compensators, it is not adaptive to match with the stochastic behavior of network characteristics. Time delay adaptive compensation gives an effective control to solve dead time, and creates a virtual environment using the plant model and computed delay which is used to compensate the effect of delay. This approach is simulated using TrueTime simulator that is a Matlab Simulink based simulator facilitates co-simulation of controller task execution in real-time kernels, network transmissions and continuous plant dynamics for NCS. The simulation result is analyzed, and it is confirmed that this control provides good performance.

Sensorless Speed Control of PMSM Based on Novel Adaptive Control with Compensated Parameters (새로운 보상 파라미터를 가지는 적응제어 기반 영구자석 동기전동기의 센서리스 속도제어)

  • Nam, Kee-Hyun;Kwon, Young-Ahn
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.7
    • /
    • pp.956-962
    • /
    • 2013
  • Recently, sensorless controls, which eliminate position and speed sensor in a permanent magnet synchronous motor drive, have been much studied. Most sensorless control algorithms are based on the back-EMF and speed estimations which are obtained from the voltage equations. Therefore, the sensorless control performance is largely affected by the parameter errors of a motor. This paper investigates a novel adaptive control with the parameter error compensation for the speed sensorless control of a permanent magnet synchronous motor. The proposed parameter estimation is obtained from the d-axis current error between the real and estimated currents. The proposed algorithm is verified through the simulation and experimentation.

Study on Satellite Vibration Control Using Adaptive Algorithm

  • Oh, Choong-Seok;Oh, Se-Boung;Bang, Hyo-Choong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2120-2125
    • /
    • 2005
  • The principal idea of vibration isolation is to filter out the response of the system over the corner frequency. The isolation objectives are to transmit the attitude control torque within the bandwidth of the attitude control system and to filter all the high frequency components coming from vibration equipment above the bandwidth. However, when a reaction wheels or control momentum gyros control spacecraft attitude, vibration inevitably occurs and degrades the performance of sensitive devices. Therefore, vibration should be controlled or isolated for missions such as Earth observing, broadcasting and telecommunication between antenna and ground stations. For space applications, technicians designing controller have to consider a periodic vibration and disturbance to ensure system performance and robustness completing various missions. In general, past research isolating vibration commonly used 6 degree order freedom isolators such as Stewart and Mallock platforms. In this study, the vibration isolation device has 3 degree order freedom, one translational and two rotational motions. The origin of the coordinate is located at the center-of-gravity of the upper plane. In this paper, adaptive notch filter finds the disturbance frequency and the reference signal in filtered-x least mean square is generated by the notch frequency. The design parameters of the notch filter are updated continuously using recursive least square algorithm. Therefore, the adaptive filtered-x least mean square algorithm is applied to the vibration suppressing experiment without reference sensor. This paper shows the experimental results of an active vibration control using an adaptive filtered-x least mean squares algorithm.

  • PDF

An Adaptive Power-Controlled Routing Protocol for Energy-limited Wireless Sensor Networks

  • Won, Jongho;Park, Hyung-Kun
    • Journal of information and communication convergence engineering
    • /
    • v.16 no.3
    • /
    • pp.135-141
    • /
    • 2018
  • Wireless sensor networks (WSN) are composed of a large number of sensor nodes. Battery-powered sensor nodes have limited coverage; therefore, it is more efficient to transmit data via multi-hop communication. The network lifetime is a crucial issue in WSNs and the multi-hop routing protocol should be designed to prolong the network lifetime. Prolonging the network lifetime can be achieved by minimizing the power consumed by the nodes, as well as by balancing the power consumption among the nodes. A power imbalance can reduce the network lifetime even if several nodes have sufficient (battery) power. In this paper, we propose a routing protocol that prolongs the network lifetime by balancing the power consumption among the nodes. To improve the balance of power consumption and improve the network lifetime, the proposed routing scheme adaptively controls the transmission range using a power control according to the residual power in the nodes. We developed a routing simulator to evaluate the performance of the proposed routing protocol. The simulation results show that the proposed routing scheme increases power balancing and improves the network lifetime.

Auto-parking Controller of Omnidirectional Mobile Robot Using Image Localization Sensor and Ultrasonic Sensors (영상위치센서와 초음파센서를 사용한 전 방향 이동로봇의 자동주차 제어기)

  • Yun, Him Chan;Park, Tae Hyoung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.6
    • /
    • pp.571-576
    • /
    • 2015
  • This paper proposes an auto-parking controller for omnidirectional mobile robots. The controller uses the multi-sensor system including ultrasonic sensor and camera. The several ultrasonic sensors of robot detect the distance between robot and each wall of the parking lot. The camera detects the global position of robot by capturing the image of artificial landmarks. To improve the accuracy of position estimation, we applied the extended Kalman filter with adaptive fuzzy controller. Also we developed the fuzzy control system to reduce the settling time of parking. The experimental results are presented to verify the usefulness of the proposed controller.

The Control of Switched Reluctance Motor using MRAS without Speed and Position Sensor

  • Park, Jung-Ku;Shin, Jae-Hwa;Han, Yoon-Seok;Kim, Young-Seok
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.768-773
    • /
    • 1998
  • The speed control of SRM(Switched Reluctance Motor) needs the accurate position and speed data of rotor. This information is generally provided by a shaft encoder or resolver. In some cases, the environment is which the motor operates may cause difficulties in maintaining the satisfactory position detection performance. Therefore, the elimination of the position and speed sensor has gained wide attention. In this paper, a new algorithm for estimation of rotor position and speed is described for the SRM drives. This method uses is nonlinear adaptive observer using the MRAS(Model Reference Adaptive System). The observer is proved by Lyapunov Stability Theory. This algorithm was implemented with a TMS320C31 DSP. Experiment results prove that the observer is able to estimate the speed and position with a little errors.

  • PDF

Dynamic Contention Window based Congestion Control and Fair Event Detection in Wireless Sensor Network

  • Mamun-Or-Rashid, Md.;Hong, Choong-Seon
    • Annual Conference of KIPS
    • /
    • 2007.05a
    • /
    • pp.1288-1290
    • /
    • 2007
  • Congestion in WSN increases energy dissipation rates of sensor nodes as well as loss of packets and thereby hinders fair and reliable event detections. We find that one of the key reasons of congestion in WSN is allowing sensing nodes to transfer as many packets as possible. This is due to the use of CSMA/CA that gives opportunistic media access control. In this paper, we propose an energy efficient congestion avoidance protocol that includes source count based hierarchical and load adaptive medium access control. Our proposed mechanism ensures load adaptive media access to the nodes and thus achieves fairness in event detection. The results of simulation show our scheme exhibits more than 90% delivery ratio with retry limit 1, even under bursty traffic condition which is good enough for reliable event perception.

An Intelligent Wireless Sensor and Actuator Network System for Greenhouse Microenvironment Control and Assessment

  • Pahuja, Roop;Verma, Harish Kumar;Uddin, Moin
    • Journal of Biosystems Engineering
    • /
    • v.42 no.1
    • /
    • pp.23-43
    • /
    • 2017
  • Purpose: As application-specific wireless sensor networks are gaining popularity, this paper discusses the development and field performance of the GHAN, a greenhouse area network system to monitor, control, and access greenhouse microenvironments. GHAN, which is an upgraded system, has many new functions. It is an intelligent wireless sensor and actuator network (WSAN) system for next-generation greenhouses, which enhances the state of the art of greenhouse automation systems and helps growers by providing them valuable information not available otherwise. Apart from providing online spatial and temporal monitoring of the greenhouse microclimate, GHAN has a modified vapor pressure deficit (VPD) fuzzy controller with an adaptive-selective mechanism that provides better control of the greenhouse crop VPD with energy optimization. Using the latest soil-matrix potential sensors, the GHAN system also ascertains when, where, and how much to irrigate and spatially manages the irrigation schedule within the greenhouse grids. Further, given the need to understand the microclimate control dynamics of a greenhouse during the crop season or a specific time, a statistical assessment tool to estimate the degree of optimality and spatial variability is proposed and implemented. Methods: Apart from the development work, the system was field-tested in a commercial greenhouse situated in the region of Punjab, India, under different outside weather conditions for a long period of time. Conclusions: Day results of the greenhouse microclimate control dynamics were recorded and analyzed, and they proved the successful operation of the system in keeping the greenhouse climate optimal and uniform most of the time, with high control performance.

A study on walking algorithm of quadruped robot used stroke control method in the irregular terrain (비평탄 지형에서 스토로크 제어법을 이용한 4족 로봇의 보행 알고리즘에 관한 연구)

  • Ahn, Young-Myung
    • 전자공학회논문지 IE
    • /
    • v.43 no.4
    • /
    • pp.52-59
    • /
    • 2006
  • Walking robot is able to move in regular or irregular terrain. It can walk that change adaptive algorithms according to the terrain. Existing papers about adaptive gaits of blind robot are based on intelligent foothold selection. However, this paper proposes a algerian that is based on the variations of stroke and period to adapt the irregular terrain. If thus adaptive algorithms is used, robot can maintain periodic gait walking and constant speed using only force sensor even in the irregular terrain without external sophisticated sensor. In this paper Quadruped robot with 2 DOF in each leg, is walk experiment with the wave gait in regular and irregular terrain. So the adaptive algorithm is proved useful through walk experiment.

Speed Sensorless Control of SPMSM with Adaptive Fuzzy and Observer (적응 퍼지 관측기를 이용한 SPMSM 드라이브의 속도 센서리스제어)

  • Lee, Young-Sil;Lee, Jung-Chul;Lee, Hong-Gyun;Nam, Su-Myeong;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2004.04a
    • /
    • pp.173-176
    • /
    • 2004
  • This paper is proposed to position and speed control of interior permanent magnet synchronous motor(SPMSM) drive without mechanical sensor. A adaptive fuzzy controller is applied for speed control of SPMSM drive A adaptive state observer is used for the mechanical state estimation of the motor. The observer was developed based on nonlinear model of SPMSM, that employs a d-q rotating reference frame attached to the rotor. A adaptive observer is implemented to compute the speed and position feedback signal. The validity of the proposed sensorless scheme is confirmed by various response characteristics.

  • PDF