• Title/Summary/Keyword: adaptive nonlinear observer

Search Result 109, Processing Time 0.035 seconds

Adaptive Observer Design for Nonlinear Systems Using Generalized Nonlinear Observer Canonical Form

  • Jo, Nam-Hoon;Son, Young-Ik
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.7
    • /
    • pp.1150-1158
    • /
    • 2004
  • In this paper, we present an adaptive observer for nonlinear systems that include unknown constant parameters and are not necessarily observable. Sufficient conditions are given for a nonlinear system to be transformed by state-space change of coordinates into an adaptive observer canonical form. Once a nonlinear system is transformed into the proposed adaptive observer canonical form, an adaptive observer can be designed under the assumption that a certain system is strictly positive real. An illustrative example is included to show the effectiveness of the proposed method.

Observer-Based Adaptive Guidance Law Considering Target Uncertainties and Control Loop Dynamics (목표물의 불확실성과 제어루프 특성을 고려한 추정기 기반 적응 유도기법)

  • 최진영;좌동경
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.8
    • /
    • pp.680-688
    • /
    • 2004
  • This paper proposes an observer-based method for adaptive nonlinear guidance. Previously, adaptive nonlinear guidance law is proposed considering target maneuver and control loop dynamics. However, several information of this guidance law is not available, and therefore needs to be estimated for more practical application. Accordingly, considering the unavailable information as bounded time-varying uncertainties, an integrated guidance and control model is re-formulated in normal form with respect to available states including target uncertainties and control loop dynamics. Then, a nonlinear observer is designed based on the integrated guidance and control model. Finally, using the estimates for states and uncertainties, an observer-based adaptive guidance law is proposed to guarantee the desired interception performance against maneuvering target. The proposed approach can be effectively used against target maneuver and the limited performance of control loop. The stability analyses and simulations of the proposed observer and guidance law are included to demonstrate the practical application of our scheme.

Adaptive Observer Design for Multi-Output Unobservable Nonlinear Systems (다중출력 관측불가능 비선형 시스템의 적응관측기 설계기법)

  • Jo Nam-Hoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.4
    • /
    • pp.271-278
    • /
    • 2005
  • In this paper, we present an adaptive observer for multi-output nonlinear systems that include unknown constant parameters and are not necessarily observable. Based on generalized nonlinear observer canonical form, new adaptive observer canonical form is proposed. Sufficient conditions are given for a nonlinear system to be transformed into the proposed adaptive observer canonical form. The existence of the proposed adaptive observer is given in terms of Lyapunov-like condition and SPR condition. An illustrative example is presented to show the design procedure of the proposed method.

Design of an Adaptive Obsever for a Class of Nonlinear Systems

  • Park, Yong-Un;Hyungbo Shim;Young I. Son;Jin H. Seo
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.1
    • /
    • pp.28-34
    • /
    • 2003
  • In this paper, the problem of designing an adaptive observer for a class of nonlinear systems with linear unknown parameters is studied. The nonlinear system to be considered consists of two blocks, only one of which has measurable states. Assuming the minimum-phase property of the error dynamics obtained after a change of coordinates and imposing some conditions on the functions multiplied by unknown parameters, an adaptive observer is constructed using an existing observer design method.

Output-Feedback Control of Uncertain Nonlinear Systems Using Adaptive Fuzzy Observer with Minimal Dynamic Order

  • Park, Jang-Hyun;Huh, Sung-Hoe;Park, Gwi-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.39.2-39
    • /
    • 2001
  • This paper describes the design of an output-feedback controller based on an adaptive fuzzy observer for uncertain single-input single-output nonlinear dynamical systems. Especially, we have focused on the realization of minimal dynamic order of the adaptive fuzzy observer. For the purpose, we propose a new method in which no strictly positive real(SPR) condition is needed and combine dynamic rule activation scheme with on-line estimation of fuzzy parameters. By using proposed scheme, we can reduce computation time, storage space, and dynamic order of the adaptive fuzzy observer ...

  • PDF

Robust Adaptive Control for Nonlinear Systems Using Nonlinear Disturbance Observer (외란 관측기를 이용한 비선형 시스템의 강인 적응제어)

  • Hwang, Young-Ho;Han, Byung-Jo;Kim, Hong-Pil;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.327-329
    • /
    • 2006
  • A controller is proposed for the robust adaptive backstepping control of a class of uncertain nonlinear systems using nonlinear disturbance observer (NDO). The NDO is applied to estimate the time-varying lumped disturbance in each step, but a disturbance observer error does not converge to zero since the derivative of lumped disturbance is not zero. Then the fuzzy neural network (FNN) is presented to estimate the disturbance observer error such that the outputs of the system are proved to converge to a small neighborhood of the desired trajectory. The proposed control scheme guarantees that all the signals in the closed-loop are semiglobally uniformly ultimately bounded on the basis of the Lyapunov theorem. Simulation results are presented to illustrate the effectiveness and the applicability of the approaches proposed.

  • PDF

Robust Position Control for PMLSM Using Friction Parameter Observer and Adaptive Recurrent Fuzzy Neural Network (마찰변수 관측기와 적응순환형 퍼지신경망을 이용한 PMLSM의 강인한 위치제어)

  • Han, Seong-Ik;Rye, Dae-Yeon;Kim, Sae-Han;Lee, Kwon-Soon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.2
    • /
    • pp.241-250
    • /
    • 2010
  • A recurrent adaptive model-free intelligent control with a friction estimation law is proposed to enhance the positioning performance of the mover in PMLSM system. For the PMLSM with nonlinear friction and uncertainty, an adaptive recurrent fuzzy neural network(ARFNN) and compensated control law in $H_{\infty}$ performance criterion are designed to mimic a perfect control law and compensate the approximated error between ideal controller and ARFNN. Combined with friction observer to estimate nonlinear friction parameters of the LuGre model, on-line adaptive laws of the controller and observer are derived based on the Lyapunov stability criterion. To analyze the effectiveness our control scheme, some simulations for the PMLSM with nonlinear friction and uncertainty were executed.

Robust Adaptive Backstepping Control of Induction Motors Using Nonlinear Disturbance Observer (비선형 외란 관측기를 이용한 유도전동기의 강인 적응 백스테핑 제어)

  • Lee, Eun-Wook
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.2
    • /
    • pp.127-134
    • /
    • 2008
  • In this paper, we propose a robust adaptive backstepping control of induction motors with uncertainties using nonlinear disturbance observer(NDO). The proposed NDO is applied to estimate the time-varying lumped uncertainty which are derived from unknown motor parameters and load torque, but NDO error does not converge to zero since the derivate of lumped uncertainty is not zero. Then the fuzzy neural network(FNN) is presented to estimate the NDO error such that the rotor speed to converge to a small neighborhood of the desired trajectory. Rotor flux and inverse time constant are estimated by the sliding mode adaptive flux observer. Simulation results are provided to verify the effectiveness of the proposed approach.

Sliding Mode Controller Design Based On The Fuzzy Observer For Uncertain Nonlinear System (불확실한 비선형 시스템의 퍼지 관측기 기반의 슬라이딩 모드 제어기 설계)

  • 서호준;박장현;허성희;박귀태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.284-284
    • /
    • 2000
  • In adaptive fuzzy control systems. fuzzy systems are used to approximate the unknown plant nonlinearities. Until now. most of the papers in the field of controller design for nonlinear system using fuzzy systems considers the affine system with fixed grid-rule structure based on system state availability. This paper considers observer-based nonlinear controller and dynamic fuzzy rule structure. Adaptive laws for fuzzy parameters for state observer and fuzzy rule structure are established so that the whole system is stable in the sense of Lyapunov.

  • PDF

Nonlinear Adaptive Control Law for ALFLEX Using Dynamic Inversion and Disturbance Accommodation Control Observer

  • Higashi, Daisaku;Shimada, Yuzo;Uchiyama, Kenji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1871-1876
    • /
    • 2005
  • In this paper, We present a new nonlinear adaptive control law using a disturbance accommodating control (DAC) observer for a Japanese automatic landing flight experiment vehicle called ALFLEX. A future spaceplane must have ability to deal with greater fluctuations in the stability and control derivatives of flight dynamics, because its flight region is much wider than that of conventional aircraft. In our previous studies, digital adaptive flight control systems have been developed based on a linear-parameter-varying (LPV) model depending on dynamic pressure, and obtained good simulation results. However, under previous control laws, it is difficult to accommodate uncertainties represented by disturbance and nonlinearity, and to design a stable flight control system. Therefore, in this study, we attempted to design a nonlinear adaptive control law using the DAC Observer and inverse dynamic methods. A good tracking property of the obtained system was confirmed in numerical simulation.

  • PDF