• Title/Summary/Keyword: adaptive neural network controller

Search Result 341, Processing Time 0.037 seconds

A FILTERING CONDITION AND STOCHASTIC ADAPTIVE CONTROL USING NEURAL NETWORK FOR MINIMUM-PHASE STOCHASTIC NONLINEAR SYSTEM (최소위상 확률 비선형 시스템을 위한 필터링 조건과 신경회로망을 사용한 적응제어)

  • Seok, Jin-Wuk
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.18-21
    • /
    • 2001
  • In this paper, some geometric condition for a stochastic nonlinear system and an adaptive control method for minimum-phase stochastic nonlinear system using neural network me provided. The state feedback linearization is widely used technique for excluding nonlinear terms in nonlinear system. However, in the stochastic environment, even if the minimum phase linear system derived by the feedback linearization is not sufficient to be controlled robustly. In the viewpoint of that, it is necessary to make an additional condition for observation of nonlinear stochastic system, called perfect filtering condition. In addition, on the above stochastic nonlinear observation condition, I propose an adaptive control law using neural network. Computer simulation shoo's that the stochastic nonlinear system satisfying perfect filtering condition is controllable and the proposed neural adaptive controller is more efficient than the conventional adaptive controller.

  • PDF

ADAPTIVE CONTROL USING NEURAL NETWORK FOR MINIMUM-PHASE STOCHASTIC NONLINEAR SYSTEM

  • Seok, Jinwuk
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.18-18
    • /
    • 2000
  • In this paper, some geometric condition for a stochastic nonlinear system and an adaptive control method for minimum-phase stochastic nonlinear system using neural network are provided. The state feedback linearization is widely used technique for excluding nonlinear terms in nonlinear system. However, in the stochastic environment, even if the minimum phase linear system derived by the feedback linearization is not sufficient to be controlled robustly. the viewpoint of that, it is necessary to make an additional condition for observation of nonlinear stochastic system, called perfect filtering condition. In addition, on the above stochastic nonlinear observation condition, I propose an adaptive control law using neural network. Computer simulation shows that the stochastic nonlinear system satisfying perfect filtering condition is controllable and the proposed neural adaptive controller is more efficient than the conventional adaptive controller

  • PDF

Adaptive High-Order Neural Network Control of Induction Servomotor Drive System (인덕션 서보 모터 드라이브 시스템의 적응 고차 신경망 제어)

  • Jeong, Jin-Hyeok;Park, Seong-Min;Hwang, Yeong-Ho;Yang, Hae-Won
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.903-905
    • /
    • 2003
  • In this paper, adaptive high-order neural network controller(AHONNC) is adopted to control of an induction servomotor. A algorithm is developed by combining compensation control and high-order neural networks. Moreover, an adaptive bound estimation algorithm was proposed to estimate the bound of approximation error. The weight of the high-order neural network can be online tuned in the sense of the Lyapunov stability theorem; thus, the stability of the closed-loop system can be guaranteed. Simulation results for induction servomotor drive system are shown to confirm the validity of the proposed controller.

  • PDF

Direct Adaptive Control of Chaotic Systems Using a Wavelet Neural Network

  • Choi, Jong-Tae;Choi, Yoon-Ho;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2187-2189
    • /
    • 2003
  • This paper presents a design method of the wavelet neural network(WNN) controller based on a direct adaptive control scheme for the intelligent control of chaotic systems. The conventional control methods such as optimal control, adaptive control and robust control may not be feasible when an explicit, faithful mathematical model cannot be constructed. Therefore, an intelligent control system that is an on-line trained WNN controller based on a direct adaptive control method is proposed to control chaotic systems whose mathematical models are not available. The gradient-descent method is used for training a wavelet neural network controller. Finally, the effectiveness and feasibility of the proposed control method is demonstrated with applications to the chaotic system.

  • PDF

Adaptive PI Controller Design Based on CTRNN for Permanent Magnet Synchronous Motors (영구자석 동기모터를 위한 CTRNN모델 기반 적응형 PI 제어기 설계)

  • Kim, Il-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.4
    • /
    • pp.635-641
    • /
    • 2016
  • In many industrial applications that use the electric motors robust controllers are needed. The method using a neural network in order to design a robust controller when a disturbance occurs is studied. Backpropagation algorithm, which is used in a conventional neural network controller is used in many areas, but when the number of neurons in the input layer, hidden layer and output layer of the neural network increases the processing speed of the learning process is slow. In this paper an adaptive PI(Proportional and Integral) controller based on CTRNN(Continuous Time Recurrent Neural Network) for permanent magnet synchronous motors is presented. By varying the load and the speed the validity of the proposed method is verified through simulation and experiments.

Design of Adaptive Fuzzy Logic Controller for Crane System (크레인 제어를 위한 적응 퍼지 제어기의 설계)

  • Lee, J.;Jeong, H.;Park, J.H.;Lee, H.;Hwang, G.;Mun, K.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2714-2716
    • /
    • 2005
  • In this paper, we designed the adaptive fuzzy logic controller for crane system using neural network and real-coding genetic algorithm. The proposed algorithm show a good performance on convergence velocity and diversity of population among evolutionary computations. The weights of neural network is adaptively changed to tune the input/output gain of fuzzy logic controller. And the genetic algorithm was used to leam the feedforward neural network. As a result of computer simulation, the proposed adaptive fuzzy logic controller is superior to conventional controllers in moving and modifying the destination point.

  • PDF

A Study on Driving Control of an Autonomous Guided Vehicle Using Humoral Immune Algorithm(HIA) Adaptive Controller (생체면역알고리즘 적응 제어기를 이용한 AGV 주행제어에 관한 연구)

  • Lee, K.S.;Suh, J.H.;Lee, Y.J.
    • Journal of Power System Engineering
    • /
    • v.9 no.4
    • /
    • pp.194-201
    • /
    • 2005
  • In this paper, we propose an adaptive mechanism based on humoral immune algorithm and neural network identifier technique. It is also applied for an autonomous guided vehicle (AGV) system. When the immune algorithm is applied to the PID controller, there exists the case that the plant is damaged due to the abrupt change of PID parameters since the parameters are almost adjusted randomly. To slove this problem, we use the neural network identifier technique for modeling the plant humoral immune algorithm (HIA) which performs the parameter tuning of the considered model, respectively. Finally, the experimental results for control of steering and speed of AGV system illustrate the validity of the proposed control scheme. Also, these results for the proposed method show that it has better performance than other conventional controller design method such as PID controller.

  • PDF

Neural Network Method for Tuning PID Gains (신경회로망을 이용한 PID 제어기의 이득조정)

  • Moon, Seok-Woo;Lee, Chong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.476-479
    • /
    • 1992
  • This paper presents a neural network method for tuning PlD controller of a time-varying process. Three gains of PlD controller are tuned for a certain desirable response pattern by back-propagation neural network. The neural network is trained using changes of output features vs. changes of PlD gains. But sometimes it needs longer training time and larger structure to train the correlation between the process and controller on entire region of the process. The difficulty in system identification is that the inverse function of the system can not be clearly stated. To cope with the problem, we do not train the neural network to respond correctly for the entire regions but train for only local region where the system is heading toward by training the neural network and tuning of the PlD controller. It may be trained for fine-tuning itself. Simulation results show that the adaptive PID controller using neural network trained in the local area performs remarkably for time-varying second order process.

  • PDF

Nonlinear Adaptive Flight Control Using Neural Networks and Backstepping (신경회로망 및 Backstepping 기법을 이용한 비선형 적응 비행제어)

  • Lee, Taeyoung;Kim, Youdan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.12
    • /
    • pp.1070-1078
    • /
    • 2000
  • A nonlinear adaptive flight control system is proposed using a backstepping controller with neural network controller. The backstepping controller is used to stabilize all state variables simultaneously without the two-timescale assumption that separates the fast dynamics, involving the angular rates of the aircraft, from the slow dynamics which includes angle of attack, sideslip angle, and bank angle. It is assumed that the aerodynamic coefficients include uncertainty, and an adaptive controller based on neural networks is used to compensate for the effect of the aerodynamic modeling error. It is shown by the Lyapunov stability theorem that the tracking errors and the weights of neural networks exponentially converge to a compact set. Finally, nonlinear six-degree-of-freedom simulation results for an F-16 aircraft model are presented to demonstrate the effectiveness of the proposed control law.

  • PDF

Tracking performance evaluation of adaptive controller using neural networks (신경망을 이용한 적응제어기의 추적 성능 평가)

  • 최수열;박재형;박선국
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1561-1564
    • /
    • 1997
  • In the study, simulation result was studied by connecting PID controller in series to the established Neural Networks Controller. Neural Network model is composed of two layers to evaluate tracking performance improvement. The reqular dynamic characteristics was also studied for the expected error to be minimized by using Widrow-Hoff delta rule. As a result of the study, We identified that tracking performance inprovement was developed more in case of connecting PID than Neural Network Contoller and that tracking plant parameter in 251 sample was approached rapidly case of time variable.

  • PDF