• 제목/요약/키워드: adaptive neural network control

검색결과 507건 처리시간 0.026초

적응학습 퍼지-신경회로망에 의한 IPMSM의 최대토크 제어 (Maximum Torque Control of IPMSM with Adaptive Learning Fuzzy-Neural Network)

  • 고재섭;최정식;이정호;정동화
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2006년도 춘계학술대회 논문집
    • /
    • pp.309-314
    • /
    • 2006
  • Interior permanent magnet synchronous motor(IPMSM) has become a popular choice in electric vehicle applications, due to their excellent power to weight ratio. This paper proposes maximum torque control of IPMSM drive using adaptive learning fuzzy neural network and artificial neural network. This control method is applicable over the entire speed range which considered the limits of the inverter's current md voltage rated value. For each control mode, a condition that determines the optimal d-axis current $i_d$ for maximum torque operation is derived. This paper considers the design and implementation of novel technique of high performance speed control for IPMSM using adaptive teaming fuzzy neural network and artificial neural network. The hybrid combination of neural network and fuzzy control will produce a powerful representation flexibility and numerical processing capability. Also, this paper proposes speed control of IPMSM using adaptive teaming fuzzy neural network and estimation of speed using artificial neural network. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The proposed control algorithm is applied to IPMSM drive system controlled adaptive teaming fuzzy neural network and artificial neural network, the operating characteristics controlled by maximum torque control are examined in detail. Also, this paper proposes the analysis results to verify the effectiveness of the adaptive teaming fuzzy neural network and artificial neural network.

  • PDF

Fuzzy Rules Optimizing by Neural Network-based Adaptive Fuzzy Control

  • K, K.-Wong;Akio, Katuki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.96.2-96
    • /
    • 2001
  • This paper presents a control method for the experimental mobile vehicle. By merging the advantages of neural network, adaptive and fuzzy control, neural network-based adaptive fuzzy control is proposed. It can deal with a large amount of training data by neural network, from these data producing more accurate fuzzy rules by adaptive control, and then controlling the object by fuzzy control. This is not the simple combination of the three methods, but merging them into one control system Experiments and some future considerations are given.

  • PDF

The Speed Control and Estimation of IPMSM using Adaptive FNN and ANN

  • Lee, Hong-Gyun;Lee, Jung-Chul;Nam, Su-Myeong;Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1478-1481
    • /
    • 2005
  • As the model of most practical system cannot be obtained, the practice of typical control method is limited. Accordingly, numerous artificial intelligence control methods have been used widely. Fuzzy control and neural network control have been an important point in the developing process of the field. This paper is proposed adaptive fuzzy-neural network based on the vector controlled interior permanent magnet synchronous motor drive system. The fuzzy-neural network is first utilized for the speed control. A model reference adaptive scheme is then proposed in which the adaptation mechanism is executed using fuzzy-neural network. Also, this paper is proposed estimation of speed of interior permanent magnet synchronous motor using artificial neural network controller. The back-propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The error between the desired state variable and the actual one is back-propagated to adjust the rotor speed, so that the actual state variable will coincide with the desired one. The back-propagation mechanism is easy to derive and the estimated speed tracks precisely the actual motor speed. This paper is proposed the analysis results to verify the effectiveness of the new method.

  • PDF

적응학습 퍼지-신경회로망에 의한 IPMSM의 최대토크 제어 (Maximum Torque Control of IPMSM with Adoptive Leaning Fuzzy-Neural Network)

  • 정동화;고재섭;최정식
    • 조명전기설비학회논문지
    • /
    • 제21권5호
    • /
    • pp.32-43
    • /
    • 2007
  • IPMSM은 하중에 비하여 고출력으로 인하여 전기자동차에 널리 보급되고 있다. 본 논문은 적응 학습 퍼지-신경회로망과 ANN을 이용한 IPMSM드라이브의 최대토크 제어를 제시한다. 이러한 제어 방법은 인버터의 정격전류 및 전압값의 범위를 고려한 전속도 영역에 적용 된다. 본 논문은 적응학습 퍼지-신경회로망을 이용하여 IPMSM의 속도제어와 ANN을 이용하여 속도를 추정을 제시한다. 신경회로망의 역전파 알고리즘은 전동기 속도의 실시간 추정을 제시하는데 사용된다. 제시된 제어 알고리즘은 적응학습 퍼지-신경회로망과 ANN 제어기를 IPMSM 드라이브에 적용된다. 최대토크에 의해 제어된 동작 특성은 세부적으로 실험한다. 또한 본 논문은 적응 학습 퍼지 신경회로망과 ANN의 효과를 결과 분석을 통해 제시한다.

유도전동기 드라이브의 고성능 제어를 위한 적응 FNN 제어기 (Adaptive FNN Controller for High Performance Control of Induction Motor Drive)

  • 이정철;이홍균;정동화
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제53권9호
    • /
    • pp.569-575
    • /
    • 2004
  • This paper is proposed adaptive fuzzy-neural network(FNN) controller for high performance of induction motor drive. The design of this algorithm based on FNN controller that is implemented using fuzzy control and neural network. This controller uses fuzzy rule as training patterns of a neural network. Also, this controller uses the back-propagation method to adjust the weights between the neurons of neural network in order to minimize the error between the command output and actual output. A model reference adaptive scheme is proposed in which the adaptation mechanism is executed by fuzzy logic based on the error and change of error measured between the motor speed and output of a reference model. The control Performance of the adaptive FNN controller is evaluated by analysis for various operating conditions. The results of analysis prove that the proposed control system has strong high performance and robustness to parameter variation. and steady- state accuracy and transient response.

시스템의 불확실성에 대한 신경망 모델을 통한 강인한 비선형 제어 (A Robust Nonlinear Control Using the Neural Network Model on System Uncertainty)

  • 이수영;정명진
    • 대한전기학회논문지
    • /
    • 제43권5호
    • /
    • pp.838-847
    • /
    • 1994
  • Although there is an analytical proof of modeling capability of the neural network, the convergency error in nonlinearity modeling is inevitable, since the steepest descent based practical larning algorithms do not guarantee the convergency of modeling error. Therefore, it is difficult to apply the neural network to control system in critical environments under an on-line learning scheme. Although the convergency of modeling error of a neural network is not guatranteed in the practical learning algorithms, the convergency, or boundedness of tracking error of the control system can be achieved if a proper feedback control law is combined with the neural network model to solve the problem of modeling error. In this paper, the neural network is introduced for compensating a system uncertainty to control a nonlinear dynamic system. And for suppressing inevitable modeling error of the neural network, an iterative neural network learning control algorithm is proposed as a virtual on-line realization of the Adaptive Variable Structure Controller. The efficiency of the proposed control scheme is verified from computer simulation on dynamics control of a 2 link robot manipulator.

  • PDF

비선형 시스템제어를 위한 복합적응 신경회로망 (Composite adaptive neural network controller for nonlinear systems)

  • 김효규;오세영;김성권
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.14-19
    • /
    • 1993
  • In this paper, we proposed an indirect learning and direct adaptive control schemes using neural networks, i.e., composite adaptive neural control, for a class of continuous nonlinear systems. With the indirect learning method, the neural network learns the nonlinear basis of the system inverse dynamics by a modified backpropagation learning rule. The basis spans the local vector space of inverse dynamics with the direct adaptation method when the indirect learning result is within a prescribed error tolerance, as such this method is closely related to the adaptive control methods. Also hash addressing technique, similar to the CMAC functional architecture, is introduced for partitioning network hidden nodes according to the system states, so global neuro control properties can be organized by the local ones. For uniform stability, the sliding mode control is introduced when the neural network has not sufficiently learned the system dynamics. With proper assumptions on the controlled system, global stability and tracking error convergence proof can be given. The performance of the proposed control scheme is demonstrated with the simulation results of a nonlinear system.

  • PDF

HAI 제어기에 의한 유도전동기 드라이브의 고성능 제어 (High Performance of Induction Motor Drive with HAl Controller)

  • 남수명;최정식;고재섭;정동화
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.570-572
    • /
    • 2005
  • This paper is proposed adaptive hybrid artificial intelligent(HAI) controller for high performance of induction motor drive. The design of this algorithm based on fuzzy-neural network(FNN) controller that is implemented using fuzzy control and neural network. This controller uses fuzzy rule as training patterns of a neural network. Also, this controller uses the back-propagation method to adjust the weights between the neurons of neural network in order to minimize the error between the command output and actual output. A model reference adaptive scheme is proposed in which the adaptation mechanism is executed by fuzzy logic based on the error and change of error measured between the motor speed and output of a reference model. The control performance of the adaptive FNN controller is evaluated by analysis for various operating conditions. The results of experiment prove that the proposed control system has strong high performance and robustness to parameter variation, and steady-state accuracy and transient response.

  • PDF

신경회로망을 이용한 유도전동기의 적응 백스테핑 제어 (Adaptive Backstepping Control of Induction Motors Using Neural Network)

  • 이은욱;양해원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 학술회의 논문집 정보 및 제어부문 B
    • /
    • pp.452-455
    • /
    • 2003
  • Based on a field-oriented model of induction motor, adaptive backstepping approach using neural network(RBFN) is proposed for the control of induction motor in this paper. In order to achieve the speed regulation with the consideration of avoiding singularity and improving power efficiency, rotor angular speed and flux amplitude tracking objectives are formulated. rotor resistance uncertainty is compensated by adaptive backstepping and mechanical lumped uncertainty such as load torque disturbance, inertia moment, friction by RBFN. Simulation is provided to verify the effectiveness of the proposed approach.

  • PDF

동적 신경회로망을 이용한 미지의 비선형 시스템 제어 방식 (Control Method of an Unknown Nonlinear System Using Dynamical Neural Network)

  • 정경권;임중규;엄기환
    • 한국정보통신학회논문지
    • /
    • 제6권3호
    • /
    • pp.487-492
    • /
    • 2002
  • 본 논문에서는 동적신경회로망을 이용한 미지의 비선형 시스템 제어 방식을 제안하였다. 제안한 방식은 비선형 시스템의 상태 공간 모델과 유사한 형태의 신경회로망을 구성하여 비선형 시스템을 식별하고, 식별한 정보를 이용하여 제어기를 설계하는 방식이다. 제안한 방식의 유용성을 확인하기 위하여 단일 관절 매니플레이터를 대상으로 시뮬레이션을 수행한 결과 우수한 제어 성능을 확인하였다.