• 제목/요약/키워드: adaptive model

검색결과 2,860건 처리시간 0.031초

Design of Model to Recognize Emotional States in a Speech

  • Kim Yi-Gon;Bae Young-Chul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제6권1호
    • /
    • pp.27-32
    • /
    • 2006
  • Verbal communication is the most commonly used mean of communication. A spoken word carries a lot of informations about speakers and their emotional states. In this paper we designed a model to recognize emotional states in a speech, a first phase of two phases in developing a toy machine that recognizes emotional states in a speech. We conducted an experiment to extract and analyse the emotional state of a speaker in relation with speech. To analyse the signal output we referred to three characteristics of sound as vector inputs and they are the followings: frequency, intensity, and period of tones. Also we made use of eight basic emotional parameters: surprise, anger, sadness, expectancy, acceptance, joy, hate, and fear which were portrayed by five selected students. In order to facilitate the differentiation of each spectrum features, we used the wavelet transform analysis. We applied ANFIS (Adaptive Neuro Fuzzy Inference System) in designing an emotion recognition model from a speech. In our findings, inference error was about 10%. The result of our experiment reveals that about 85% of the model applied is effective and reliable.

An Adaptive Control for the Propagation Errors Incurred by DCT Coefficient-Dropping Transcoder

  • Kim, Jin-Soo;Kim, Jae-Gon;Seo, Kwang-Deok;Yun, Mong-Han
    • ETRI Journal
    • /
    • 제29권5호
    • /
    • pp.559-568
    • /
    • 2007
  • This paper presents a new distortion control scheme with a simple estimation model for the propagation errors incurred by dropping some parts of the bitstream in a frame dropping-coefficient dropping (FD-CD) transcoder. The primary goal of this paper is to facilitate bit-rate conversions and rate-distortion controls in the compressed domain without introducing a full decoding and reencoding system in the pixel domain. First, the error propagation behavior over several frame sequences due to coefficient dropping is investigated on the basis of statistical and empirical properties. Then, such properties are used to develop a simple estimation model for the CD distortion accounting for the characteristics of the underlying coded-frame. Finally, the proposed estimation model allows us to determine the amount of coefficient dropping and to effectively allocate rate-distortions into coded-frames. Experimental results show that the proposed estimation model accurately describes the characteristics of propagation errors adaptively in the compressed domain and can be easily applied to distortion control over different kinds of video sequences.

  • PDF

Novel Control Method for a Hybrid Active Power Filter with Injection Circuit Using a Hybrid Fuzzy Controller

  • Chau, MinhThuyen;Luo, An;Shuai, Zhikang;Ma, Fujun;Xie, Ning;Chau, VanBao
    • Journal of Power Electronics
    • /
    • 제12권5호
    • /
    • pp.800-812
    • /
    • 2012
  • This paper analyses the mathematical model and control strategies of a Hybrid Active Power Filter with Injection Circuit (IHAPF). The control strategy based on the load harmonic current detection is selected. A novel control method for a IHAPF, which is based on the analyzed control mathematical model, is proposed. It consists of two closed-control loops. The upper closed-control loop consists of a single fuzzy logic controller and the IHAPF model, while the lower closed-control loop is composed of an Adaptive Network based Fuzzy Inference System (ANFIS) controller, a Neural Generalized Predictive (NGP) regulator and the IHAPF model. The purpose of the lower closed-control loop is to improve the performance of the upper closed-control loop. When compared to other control methods, the simulation and experimental results show that the proposed control method has the advantages of a shorter response time, good online control and very effective harmonics reduction.

Regularization Parameter Selection for Total Variation Model Based on Local Spectral Response

  • Zheng, Yuhui;Ma, Kai;Yu, Qiqiong;Zhang, Jianwei;Wang, Jin
    • Journal of Information Processing Systems
    • /
    • 제13권5호
    • /
    • pp.1168-1182
    • /
    • 2017
  • In the past decades, various image regularization methods have been introduced. Among them, total variation model has drawn much attention for the reason of its low computational complexity and well-understood mathematical behavior. However, regularization parameter estimation of total variation model is still an open problem. To deal with this problem, a novel adaptive regularization parameter selection scheme is proposed in this paper, by means of using the local spectral response, which has the capability of locally selecting the regularization parameters in a content-aware way and therefore adaptively adjusting the weights between the two terms of the total variation model. Experiment results on simulated and real noisy image show the good performance of our proposed method, in visual improvement and peak signal to noise ratio value.

하이브리드 철도차량 시스템의 전기-열 모델 기반 리튬이온 배터리 온도 추정 방안 (Electro-Thermal Model Based-Temperature Estimation Method of Lithium-Ion Battery for Fuel-Cell and Battery Hybrid Railroad Propulsion System)

  • 박성윤;김재영;김종훈;류준형;조인호
    • 전력전자학회논문지
    • /
    • 제26권5호
    • /
    • pp.357-363
    • /
    • 2021
  • Eco-friendly hybrid railroad propulsion system with fuel-cell and battery was suggested to reduce carbon dioxide gas and replace retired diesel railroads. Lithium-ion battery with high energy/power density and long lifetime is selected as the energy source at the battery side due to its excellent performance. However, the performance of lithium-ion batteries was affected by temperature, current rate, and operating condition. Temperature is known to be the most influential factor in changing battery parameters. In addition, appropriate thermal management is required to ensure the safe and effective operation of lithium-ion battery. Electro-thermal coupled model with varying parameter depends on temperature, and state-of-charge (SOC) is suggested to estimate battery temperature. The electric-thermal coupled model contains diffusion current using parameter identification by adaptive control algorithm when considering thermal diffusion effect. An experiment under forced convection was conducted using cylindrical cell and 18 parallel-connected battery module to demonstrate the method.

Exploring Edutech-based Vocational Education and Training Model for Worker Training Programs

  • Kyung-Hwa Rim;Jungmin Shin;Ju-ri Kim
    • 실천공학교육논문지
    • /
    • 제15권2호
    • /
    • pp.273-283
    • /
    • 2023
  • Education has recently witnessed a rapid increase in the use of edutech worldwide. This study focuses on Korean workers and explores an edutech-based learning model for vocational education and training. Based on analyses of edutech cases and interviews with edutech experts, a draft edutech model was designed and the validity was evaluated based on two Delphi surveys with a panel of experts in the field. The study's findings suggest that edutech-based employee education and training should prioritize LXP orientation (last CVR=1, last Mean=4.70) , implement adaptive learning through learning analytics (last CVR=1, last Mean=4.90), enhance the human touch effect using edutech (last CVR=1, last Mean=4.90), and emphasize the importance of designing curricula that apply edutech in a step-by-step learning process while incorporating suitable instructional design for the key technologies involved in vocational training programs. In addition, it was revealed that there is a strong need to implement a method that makes each stage of the learning process more effective (before, during, and after). Edutech-based vocational training program should consider the interests of all stakeholders, including learners, instructors, vocational training institutions, and government agencies. Given the promotion of government-sponsored vocational training projects in Korea, the findings of this research are likely to have significant implications for the future of Korea's education and training policies.

Estimation of the mechanical properties of oil palm shell aggregate concrete by novel AO-XGB model

  • Yipeng Feng;Jiang Jie;Amir Toulabi
    • Steel and Composite Structures
    • /
    • 제49권6호
    • /
    • pp.645-666
    • /
    • 2023
  • Due to the steadily declining supply of natural coarse aggregates, the concrete industry has shifted to substituting coarse aggregates generated from byproducts and industrial waste. Oil palm shell is a substantial waste product created during the production of palm oil (OPS). When considering the usage of OPSC, building engineers must consider its uniaxial compressive strength (UCS). Obtaining UCS is expensive and time-consuming, machine learning may help. This research established five innovative hybrid AI algorithms to predict UCS. Aquila optimizer (AO) is used with methods to discover optimum model parameters. Considered models are artificial neural network (AO - ANN), adaptive neuro-fuzzy inference system (AO - ANFIS), support vector regression (AO - SVR), random forest (AO - RF), and extreme gradient boosting (AO - XGB). To achieve this goal, a dataset of OPS-produced concrete specimens was compiled. The outputs depict that all five developed models have justifiable accuracy in UCS estimation process, showing the remarkable correlation between measured and estimated UCS and models' usefulness. All in all, findings depict that the proposed AO - XGB model performed more suitable than others in predicting UCS of OPSC (with R2, RMSE, MAE, VAF and A15-index at 0.9678, 1.4595, 1.1527, 97.6469, and 0.9077). The proposed model could be utilized in construction engineering to ensure enough mechanical workability of lightweight concrete and permit its safe usage for construction aims.

DEVELOPMENT AND EVALUATION OF A CENTROID-BASED EOQ MODEL FOR ITEMS SUBJECT TO DEGRADATION AND SHORTAGES

  • K. KALAIARASI;S. SWATHI
    • Journal of applied mathematics & informatics
    • /
    • 제42권5호
    • /
    • pp.1063-1076
    • /
    • 2024
  • This research introduces an innovative approach to revolutionize inventory management strategies amid unpredictable demand and uncertainties. Introducing a Fuzzy Economic Order Quantity (EOQ) model, enriched with the centroid defuzzification method and supervised machine learning, the study offers a comprehensive solution for optimized decision-making. The model transcends traditional inventory paradigms by seamlessly integrating fuzzy logic and advanced machine learning, emphasizing adaptability in fast-paced business landscapes. The research unfolds against the backdrop of agile inventory management advocacy, with key contributions including the centroid defuzzification method for crisp interpretation and the integration of linear regression for cost prediction. The study employs a real-life bakery scenario to demonstrate the efficacy of both crisp and fuzzy models, underscoring the latter's superiority in handling uncertainties. Comparative analysis reveals nuanced impacts of uncertainty on inventory decisions, while linear regression establishes statistical relationships for cost predictions. The findings underscore the pivotal role of fuzzy logic in optimizing inventory management, paving the way for future enhancements, advanced machine learning integration, and real-world validation. This research not only contributes to adaptive inventory management evolution but also sets the stage for further exploration and refinement in dynamic business landscapes.

The Atomic-Scale Investigation of Friction at Hydrocarbon Interfaces via Molecular Dynamics Simulations ASIATRIB 2002

  • Harrison, J.A.;Gao, G;Chateauneuf, G.M.;Mikulski, P.T.
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.59-60
    • /
    • 2002
  • In this digest, we briefly review our current molecular dynamics (MD) simulations that utilize both the reactive empirical bond order potential (REBO) and the adaptive intermolecular REBO (AIREBO) potential energy functions. The AIREBO potential includes intermolecular interactions, so that self·assembled monolayers, and liquids, can be modeled. We have examined the mechanical and tribological properties of model self assembled monolayers and amorphous carbon films. Self-assembled monolayers are modeled by covalently bonding hydrocarbon chains to diamond substrates. Because the REBO potentials can model chemical reactions, specific compression and sliding induced chemical reactions were identified.

  • PDF

전역근사최적화를 위한 소프트컴퓨팅기술의 활용 (Utilizing Soft Computing Techniques in Global Approximate Optimization)

  • 이종수;장민성;김승진;김도영
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2000년도 봄 학술발표회논문집
    • /
    • pp.449-457
    • /
    • 2000
  • The paper describes the study of global approximate optimization utilizing soft computing techniques such as genetic algorithms (GA's), neural networks (NN's), and fuzzy inference systems(FIS). GA's provide the increasing probability of locating a global optimum over the entire design space associated with multimodality and nonlinearity. NN's can be used as a tool for function approximations, a rapid reanalysis model for subsequent use in design optimization. FIS facilitates to handle the quantitative design information under the case where the training data samples are not sufficiently provided or uncertain information is included in design modeling. Properties of soft computing techniques affect the quality of global approximate model. Evolutionary fuzzy modeling (EFM) and adaptive neuro-fuzzy inference system (ANFIS) are briefly introduced for structural optimization problem in this context. The paper presents the success of EFM depends on how optimally the fuzzy membership parameters are selected and how fuzzy rules are generated.

  • PDF