• 제목/요약/키워드: adaptive learning

검색결과 1,003건 처리시간 0.035초

시멘틱 웹의 e-Learning 적용에 대한 연구 (A Study on Application of Semantic Web for e-Learning)

  • 정의석;김현철
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2003년도 가을 학술발표논문집 Vol.30 No.2 (1)
    • /
    • pp.589-591
    • /
    • 2003
  • 현재 대부분 e-Learning에서 이루어지고 있는 교육은 학습(Loaming)이 아닌 단순 훈련(Trainning)만이 이루어지고 있다. e-Learning에서 진정한 학습이 이루어지기 위해서는 학습자의 수준에 맞는 적응적(Adaptive), 적시적(Just-in-Time) 학습이 단편적이 아닌 연속적, 통합적으로 이루어져야 한다. 이를 위해서는 기술적 관점뿐만 아니라, 발견적 학습(heuristic learning)관점에서 학습자원이 기술되고, 컴퓨터(에이전트)가 학습자원의 구성요소인 학습목표(Goal), 학습내용(Content), 학습맥락(Context), 학습구조(Structure), 학습전략(Strategy)의 의미(Semantic)와 관계(Relation)를 이해해 학습자에게 필요한 정보만을 검색, 추론해주고 이를 학습자 수준에 맞게 재가공해 학습자에게 지식(Knowledge)을 적응적(Adaptive), 적시적(Just-in-Time)으로 전달해주는 e-Learning 학습 환경이 필수적이다. 메타데이터(RDF), 온톨로지(Ontology), 에이전트(Agent) 매커니즘의 시멘틱 웹을 e-Learning 환경에 적용함으로써 학습자원의 구성요소의 의미와 관계를 파악해 적응적(Adaptive)으로 지식을 전달해 주어 자기 주도적 학습(Self-directed Loaming)을 실현해 줄 수 있다.

  • PDF

유적탐사 지능형 학습 환경 (An Intelligent Learning Environment for Heritage Alive)

  • 김용세;김성아;;박범진;전경자;조윤정
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.1061-1065
    • /
    • 2004
  • The knowledge-based society of the 21st century requires effective education and learning methods in each professional field because the development of human resource determines its competence more than any other factors. It is highly desirable to develop an intelligent tutoring system, which meets ever increasing demands of education and learning. Such a system should be adaptive to each individual learner's demands as well as the continuously changing state of the learning process, thus enabling the effective education. The development of a learning environment based on learner modeling is necessary in order to be adaptive to individual learning variants. An intelligent learning environment is being developed targeting the heritage education, which is able to provide a customized and refined learning guide by storing the content of interactions between the system and the learner, analyzing the correlations in learning situations, and inferring the learning preference from the learner's learning history. This paper proposes a heritage learning system of Bulguksa temple, integrating the ontology-based learner modeling and the learning preference which considers perception styles, input and processing methods, and understanding process of information.

  • PDF

비선형 백스테핑 방식에 의한 차량 동력학의 적응-학습제어 (Adaptive-learning control of vehicle dynamics using nonlinear backstepping technique)

  • 이현배;국태용
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.636-639
    • /
    • 1997
  • In this paper, a dynamic control scheme is proposed which not only compensates for the lateral dynamics and longitudinal dynamics but also deal with the yaw motion dynamics. Using the dynamic control technique, adaptive and learning algorithm together, the proposed controller is not only robust to disturbance and parameter uncertainties but also can learn the inverse dynamics model in steady state. Based on the proposed dynamic control scheme, a dynamic vehicle simulator is contructed to design and test various control techniques for 4-wheel steering vehicles.

  • PDF

퍼지-신경망 제어기를 이용한 불확실한 로보트 매니퓰레이터의 적응 학습 제어 (Adaptive Learning Control of an Uncertain Robot Manipulator Using Fuzzy-Neural Network Controller)

  • 김성현;최영길;김용호;전홍태
    • 전자공학회논문지B
    • /
    • 제33B권5호
    • /
    • pp.25-32
    • /
    • 1996
  • This paper will propose the direct adaptive learning control scheme based on adaptive control technique and intelligent control theory for a nonlinear system. Using the proposed learning control scheme, we will apply to on-line control an uncertain but for model perfect matching, it's structure condition is known. The effectiveness of the proposed control schem will be illustrated by simulations of a robot manipulator.

  • PDF

Teleoperating system의 적응학습제어에 관한 연구 (Study of adaptive learning control for teleoperating system)

  • 최병현;국태용;최혁렬
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.168-172
    • /
    • 1996
  • In master-slave teleoperating system, it is important that the system has good maneuverability. In this paper, it is addressed an adaptive learning control method applicable to the master-slave system. This control scheme has the ability to estimate uncertain dynamic parameters included intrinsically in the system and to achieve the desired performance without the nasty matrix operation. The proposed method is applied to a master-slave teleoperating system composed of two SCARA robots and verified experimentally.

  • PDF

적응 뉴럴 컴퓨팅 방법을 이용한 동적 시스템의 특성 모델링 (Characteristics Modeling of Dynamic Systems Using Adaptive Neural Computation)

  • 김병호
    • 제어로봇시스템학회논문지
    • /
    • 제13권4호
    • /
    • pp.309-314
    • /
    • 2007
  • This paper presents an adaptive neural computation algorithm for multi-layered neural networks which are applied to identify the characteristic function of dynamic systems. The main feature of the proposed algorithm is that the initial learning rate for the employed neural network is assigned systematically, and also the assigned learning rate can be adjusted empirically for effective neural leaning. By employing the approach, enhanced modeling of dynamic systems is possible. The effectiveness of this approach is veri tied by simulations.

Adaptive fuzzy learning control for a class of second order nonlinear dynamic systems

  • Park, B.H.;Lee, Jin S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 Proceedings of the Korea Automatic Control Conference, 11th (KACC); Pohang, Korea; 24-26 Oct. 1996
    • /
    • pp.103-106
    • /
    • 1996
  • This paper presents an iterative fuzzy learning control scheme which is applicable to a broad class of nonlinear systems. The control scheme achieves system stability and boundedness by using the linear feedback plus adaptive fuzzy controller and achieves precise tracking by using the iterative learning rules. The switching mode control unit is added to the adaptive fuzzy controller in order to compensate for the error that has been inevitably introduced from the fuzzy approximation of the nonlinear part. It also obviates any supervisory control action in the adaptive fuzzy controller which normally requires high gain signal. The learning control algorithm obviates any output derivative terms which are vulnerable to noise.

  • PDF

비선형 시스템제어를 위한 복합적응 신경회로망 (Composite adaptive neural network controller for nonlinear systems)

  • 김효규;오세영;김성권
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.14-19
    • /
    • 1993
  • In this paper, we proposed an indirect learning and direct adaptive control schemes using neural networks, i.e., composite adaptive neural control, for a class of continuous nonlinear systems. With the indirect learning method, the neural network learns the nonlinear basis of the system inverse dynamics by a modified backpropagation learning rule. The basis spans the local vector space of inverse dynamics with the direct adaptation method when the indirect learning result is within a prescribed error tolerance, as such this method is closely related to the adaptive control methods. Also hash addressing technique, similar to the CMAC functional architecture, is introduced for partitioning network hidden nodes according to the system states, so global neuro control properties can be organized by the local ones. For uniform stability, the sliding mode control is introduced when the neural network has not sufficiently learned the system dynamics. With proper assumptions on the controlled system, global stability and tracking error convergence proof can be given. The performance of the proposed control scheme is demonstrated with the simulation results of a nonlinear system.

  • PDF

다중 학습 알고리듬을 이용한 평면형 병렬 매니퓰레이터의 Fuzzy 논리 제어 (Fuzzy logic control of a planar parallel manipulator using multi learning algorithm)

  • 송낙윤;조황
    • 제어로봇시스템학회논문지
    • /
    • 제5권8호
    • /
    • pp.914-922
    • /
    • 1999
  • A study on the improvement of tracking performance of a 3 DOF planar parallel manipulator is performed. A class of adaptive tracking control sheme is designed using self tuning adaptive fuzzy logic control theory. This control sheme is composed of three classical PD controller and a multi learning type self tuning adaptive fuzzy logic controller set. PD controller is tuned roughly by manual setting a priori and fuzzy logic controller is tuned precisely by the gradient descent method for a global solution during run-time, so the proposed control scheme is tuned more rapidly and precisely than the single learning type self tuning adaptive fuzzy logic control sheme for a local solution. The control performance of the proposed algorithm is verified through experiments.

  • PDF

이산시간 파라미터 적응형 학습제어 시스템에 관한 연구 (A Study on the Discrete Time Parameter Adaptive Learning Control System)

  • 최순철;양해원
    • 한국통신학회논문지
    • /
    • 제13권4호
    • /
    • pp.352-359
    • /
    • 1988
  • 학습제어 시스템은 제어대상 시스템의 파라미터를 모르는 경우에 파라미터 적응의 개념을 도입해서, 일종의 hybrid형 적응제어 시스템으로 간주하여 설계될 수 있다. 이러한 파라미터 적응형 학습제어 시스템은 이미 보고되었으나 연속시간 시스템에만 적용될 수 있었다. 본 논문에서는 메모리소자를 반드시 포함하여야 하는 학습시스템에 대하여, 위의 제어알고리즘을 이산화 함으로써 디지탈기술의 발전에 비추어 실제의 적용을 용이하도록 하였으며, 그 타당성을 시뮬레이션으 통하여 확인하였다.

  • PDF