• Title/Summary/Keyword: adaptive genetic algorithm

Search Result 227, Processing Time 0.026 seconds

Machine Learning Perspective Gene Optimization for Efficient Induction Machine Design

  • Selvam, Ponmurugan Panneer;Narayanan, Rengarajan
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1202-1211
    • /
    • 2018
  • In this paper, induction machine operation efficiency and torque is improved using Machine Learning based Gene Optimization (ML-GO) Technique is introduced. Optimized Genetic Algorithm (OGA) is used to select the optimal induction machine data. In OGA, selection, crossover and mutation process is carried out to find the optimal electrical machine data for induction machine design. Initially, many number of induction machine data are given as input for OGA. Then, fitness value is calculated for all induction machine data to find whether the criterion is satisfied or not through fitness function (i.e., objective function such as starting to full load torque ratio, rotor current, power factor and maximum flux density of stator and rotor teeth). When the criterion is not satisfied, annealed selection approach in OGA is used to move the selection criteria from exploration to exploitation to attain the optimal solution (i.e., efficient machine data). After the selection process, two point crossovers is carried out to select two crossover points within a chromosomes (i.e., design variables) and then swaps two parent's chromosomes for producing two new offspring. Finally, Adaptive Levy Mutation is used in OGA to select any value in random manner and gets mutated to obtain the optimal value. This process gets iterated till finding the optimal value for induction machine design. Experimental evaluation of ML-GO technique is carried out with performance metrics such as torque, rotor current, induction machine operation efficiency and rotor power factor compared to the state-of-the-art works.

A Local Tuning Scheme of RED using Genetic Algorithm for Efficient Network Management in Muti-Core CPU Environment (멀티코어 CPU 환경하에서 능률적인 네트워크 관리를 위한 유전알고리즘을 이용한 국부적 RED 조정 기법)

  • Song, Ja-Young;Choe, Byeong-Seog
    • Journal of Internet Computing and Services
    • /
    • v.11 no.1
    • /
    • pp.1-13
    • /
    • 2010
  • It is not easy to set RED(Random Early Detection) parameter according to environment in managing Network Device. Especially, it is more difficult to set parameter in the case of maintaining the constant service rate according to the change of environment. In this paper, we hypothesize the router that has Multi-core CPU in output queue and propose AI RED(Artificial Intelligence RED), which directly induces Genetic Algorithm of Artificial Intelligence in the output queue that is appropriate to the optimization of parameter according to RED environment, which is automatically adaptive to workload. As a result, AI RED Is simpler and finer than FuRED(Fuzzy-Logic-based RED), and RED parameter that AI RED searches through simulations is more adaptive to environment than standard RED parameter, providing the effective service. Consequently, the automation of management of RED parameter can provide a manager with the enhancement of efficiency in Network management.

A study on the genetic algorithms for the scheduling of parallel computation (병렬계산의 스케쥴링에 있어서 유전자알고리즘에 관한 연구)

  • 성기석;박지혁
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1997.10a
    • /
    • pp.166-169
    • /
    • 1997
  • For parallel processing, the compiler partitions a loaded program into a set of tasks and makes a schedule for the tasks that will minimize parallel processing time for the loaded program. Building an optimal schedule for a given set of partitioned tasks of a program has known to be NP-complete. In this paper we introduce a GA(Genetic Algorithm)-based scheduling method in which a chromosome consists of two parts of a string which decide the number and order of tasks on each processor. An additional computation is used for feasibility constraint in the chromosome. By granularity theory, a partitioned program is categorized into coarse-grain or fine-grain types. There exist good heuristic algorithms for coarse-grain type partitioning. We suggested another GA adaptive to the coarse-grain type partitioning. The infeasibility of chromosome is overcome by the encoding and operators. The number of processors are decided while the GA find the minimum parallel processing time.

  • PDF

Preventing Premature Convergence in Genetic Algorithms with Adaptive Population Size (유전자 집단의 크기 조절을 통한 Genetic Algorithm의 조기 포화 방지)

  • 박래정;박철훈
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.12
    • /
    • pp.1680-1686
    • /
    • 1995
  • GAs, effective stochastic search algorithms based on the model of natural evolution and genetics, have been successfully applied to various optimization problems. When population size is not large, GAs often suffer from the phenomenon of premature convergence in which all chromosomes in the population lose the diversity of genes before they find the optimal solution. In this paper, we propose that a new heuristic that maintains the diversity of genes by adding some chromosomes with random mutation and selective mutation into population during evolution. And population size changes dynamically with supplement of new chromosomes. Experimental results for several test functions show that when population size is rather small and the length of chromosome is not long, this method is effective.

  • PDF

Solving Optimization Problems by Using the Schema Extraction Method (스키마 추출 기법을 이용한 최적화 문제 해결)

  • Cho, Yong-Gun;Kang, Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.278-278
    • /
    • 2000
  • In this paper, we introduce a new genetic reordering operator based on the concept of schema to solve optimization problems such as the Traveling Salesman Problem(TSP) and maximizing or minimizing functions. In particular, because TSP is a well-known combinational optimization problem andbelongs to a NP-complete problem, there is huge solution space to be searched. For robustness to local minima, the operator separates selected strings into two parts to reduce the destructive probability of good building blocks. And it applies inversion to the schema part to prevent the premature convergence. At the same time, it searches new spaces of solutions. Additionally, the non-schema part is applied to inversion for robustness to local minima. By doing so, we can preserve diversity of the distributions in population and make GA be adaptive to the dynamic environment.

  • PDF

Adaptive Intrusion Detection Algorithm based on Learning Algorithm (학습 알고리즘 기반의 적응형 침입 탐지 알고리즘)

  • Sim, Kwee-Bo;Yang, Jae-Won;Lee, Dong-Wook;Seo, Dong-Il;Choi, Yang-Seo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.1
    • /
    • pp.75-81
    • /
    • 2004
  • Signature based intrusion detection system (IDS), having stored rules for detecting intrusions at the library, judges whether new inputs are intrusion or not by matching them with the new inputs. However their policy has two restrictions generally. First, when they couldn`t make rules against new intrusions, false negative (FN) errors may are taken place. Second, when they made a lot of rules for maintaining diversification, the amount of resources grows larger proportional to their amount. In this paper, we propose the learning algorithm which can evolve the competent of anomaly detectors having the ability to detect anomalous attacks by genetic algorithm. The anomaly detectors are the population be composed of by following the negative selection procedure of the biological immune system. To show the effectiveness of proposed system, we apply the learning algorithm to the artificial network environment, which is a computer security system.

Special Protection and Control Scheme for Transmission Line Overloading Elimination Based on Hybrid Differential Evolution/Electromagnetism-Like Algorithm

  • Hadi, Mahmood Khalid;Othman, Mohammad Lutfi;Wahab, Noor Izzri Abd
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.1729-1742
    • /
    • 2017
  • In designing System Protection Schemes (SPSs) in power systems, protecting transmission network against extreme undesired conditions becomes a significant challenge in mitigating the transmission line overloading. This paper presents an intelligent Special Protection and Control Scheme (SPCS) using of Differential Evolution with Adaptive Mutation (DEAM) approach to obtain the optimum generation rescheduling to solve the transmission line overloading problem in system contingency conditions. DEAM algorithm employs the attraction-repulsion idea that is applied in the electromagnetism-like algorithm to support the mutation process of the conventional Differential Evolution (DE) algorithm. Different N-1 contingency conditions under base and increase load demand are considered in this paper. Simulation results have been compared with those acquired from Genetic Algorithm (GA) application. Minimum severity index has been considered as the objective function. The final results show that the presented DEAM method offers better performance than GA in terms of faster convergence and less generation fuel cost. IEEE 30-bus test system has been used to prove the effectiveness and robustness of the proposed algorithm.

A New Multi-objective Evolutionary Algorithm for Inter-Cloud Service Composition

  • Liu, Li;Gu, Shuxian;Fu, Dongmei;Zhang, Miao;Buyya, Rajkumar
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.1
    • /
    • pp.1-20
    • /
    • 2018
  • Service composition in the Inter-Cloud raises new challenges that are caused by the different Quality of Service (QoS) requirements of the users, which are served by different geo-distributed Cloud providers. This paper aims to explore how to select and compose such services while considering how to reach high efficiency on cost and response time, low network latency, and high reliability across multiple Cloud providers. A new hybrid multi-objective evolutionary algorithm to perform the above task called LS-NSGA-II-DE is proposed, in which the differential evolution (DE) algorithm uses the adaptive mutation operator and crossover operator to replace the those of the Non-dominated Sorting Genetic Algorithm-II (NSGA-II) to get the better convergence and diversity. At the same time, a Local Search (LS) method is performed for the Non-dominated solution set F{1} in each generation to improve the distribution of the F{1}. The simulation results show that our proposed algorithm performs well in terms of the solution distribution and convergence, and in addition, the optimality ability and scalability are better compared with those of the other algorithms.

Modeling and Simulation of Evolutionary Dynamic Path Planning for Unmanned Aerial Vehicles Using Repast (Repast기반 진화 알고리즘을 통한 무인 비행체의 동적 경로계획 모델링 및 시뮬레이션)

  • Kim, Yong-Ho
    • Journal of the Korea Society for Simulation
    • /
    • v.27 no.2
    • /
    • pp.101-114
    • /
    • 2018
  • Several different approaches and mechanisms are introduced to solve the UAV path planning problem. In this paper, we designed and implemented an agent-based simulation software using the Repast platform and Java Genetic Algorithm Package to examine an evolutionary path planning method by implementing and testing within the Repast environment. The paper demonstrates the life-cycle of an agent-based simulation software engineering project while providing a documentation strategy that allows specifying autonomous, adaptive, and interactive software entities in a Multi-Agent System. The study demonstrates how evolutionary path planning can be introduced to improve cognitive agent capabilities within an agent-based simulation environment.

Distributed Autonomous Robotic System based on Artificial Immune system and Distributed Genetic Algorithm (인공 면역 시스템과 분산 유전자 알고리즘에 기반한 자율 분산 로봇 시스템)

  • Sim, Kwee-Bo;Hwang, Chul-Min
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.2
    • /
    • pp.164-170
    • /
    • 2004
  • This paper proposes a Distributed Autonomous Robotic System(AIS) based on Artificial Immune System(AIS) and Distributed Genetic Algorithm(DGA). The behaviors of robots in the system are divided into global behaviors and local behaviors. The global behaviors are actions to search tasks in environment. These actions are composed of two types: dispersion and aggregation. AIS decides one among above two actions, which robot should select and act on in the global. The local behaviors are actions to execute searched tasks. The robots learn the cooperative actions in these behaviors by the DGA in the local. The proposed system is more adaptive than the existing system at the viewpoint that the robots learn and adapt the changing of tasks.