
http://doi.org/10.9709/JKSS.2018.27.2.101
ISSN 1225-5904 Vol. 27, No. 2, pp. 101-114 (2018. 6)

한국시뮬레이션학회 논문지

제27권 제2호 2018년 6월 101

1. Introduction

Autonomous vehicles such as unmanned aerial vehicles,

robots, and unmanned ground vehicles are on demand

by military and civilian operations (Cruz, et al., 2008).

Such vehicles are capable of conducting high-level

missions of tasks, as well as low-level actions without

direct human control. Using such autonomous vehicles

hazardous missions, such as exploration of planets in

the universe, battlefield missions, and nuclear operations

can be achieved safely. New simulation models, command

and control mechanism and simulation tools have been

developed to tackle issues for different aspects of the

autonomous vehicle control problems. Currently, a UAV

is operated by at least one ground operator. However,

Repast기반 진화 알고리즘을 통한
무인 비행체의 동적 경로계획 모델링 및 시뮬레이션

김용호 †

Modeling and Simulation of Evolutionary Dynamic Path Planning
for Unmanned Aerial Vehicles Using Repast

Yong-Ho Kim†

ABSTRACT

Several different approaches and mechanisms are introduced to solve the UAV path planning problem. In this

paper, we designed and implemented an agent-based simulation software using the Repast platform and Java

Genetic Algorithm Package to examine an evolutionary path planning method by implementing and testing within

the Repast environment. The paper demonstrates the life-cycle of an agent-based simulation software engineering

project while providing a documentation strategy that allows specifying autonomous, adaptive, and interactive

software entities in a Multi-Agent System. The study demonstrates how evolutionary path planning can be introduced

to improve cognitive agent capabilities within an agent-based simulation environment.

Key words : Evolutionary path planning, agent-based simulation, Genetic algorithm, Repast Simulator,

요 약

무인 비행체의 실시간 경로계획 생성 시 최적의 경로를 찾기 위한 다양한 연구가 진행되어 왔다. 본 논문에서는 진화알고

리즘을 통한 무인비행체의 경로계획 생성을 수행하고, 이를 에이전트 기반 시뮬레이션 환경에서 구현 및 테스트가 가능함을

검증하였다. 이를 위해, Repast toolkit에 JGAP 패키지를 탑재하여 Java 기반의 유전 알고리즘 프로그래밍을 통한 무인

비행체의 경로 계획을 생성하였고, 해당 결과를 에이전트 기반으로 시뮬레이션을 수행하였다. 본 논문에서는 에이전트 기반

시뮬레이션 소프트웨어를 소프트웨어 공학 개발 생명주기에 맞춰 문서화하여 설계 및 구현되었으며, 에이전트 모델링 설계는

자동화, 적응성 및 에이전트 간의 상호 작용에 초점을 맞추었다. 또한, 시뮬레이션을 통해 에이전트 기반 환경에서 설계한

모델 및 시나리오를 검증하여 다수의 비행 에이전트에 내재된 동적 경로계획 알고리즘이 실시간으로 자율적인 경로 생성이

가능함을 증명하였다.

주요어 : 진화알고리즘, 에이전트 기반 시뮬레이션, 유전 알고리즘, Repast 시뮬레이터,

Received: 22 February 2018, Revised: 17 April 2018,
Accepted: 11 June 2018

†Corresponding Author: Yong Ho Kim
E-mail: yzk0302@gmail.com
Agency for Defense Development, Daejeon, Korea

김용호

102 한국시뮬레이션학회 논문지

the objective is to improve autonomy of such vehicles.

To facilitate autonomic behavior, one of the challenge

problems in autonomous vehicle development involves

development of advanced dynamic path planning methods.

Path planning can be divided into two components,

online and offline path planning. Offline path planning

requires complete knowledge of the environment. So,

all UAVs know locations of targets, obstacles, and

geometry. With that information, they can generate

optimal paths; however, it calculation of such paths is

time consuming (Nikolos, et al., 2003). Many proposed

path planning mechanisms are based on offline methods.

In online path planning, UAVs fly with only limited

information such as target’s location, or mission tasks.

Since online path planning mechanism does not have

complete information, it is challenging to compute

optimal path; on the other hand, computation cost is

lower. Genetic algorithms mimic evolutionary biology,

which involves the study of evolutionary process of

human nature. Genetic algorithm is selected because

research shows that evolutionary path planning could

be an efficient and effective solution to path planning

for swarm of unmanned vehicles (Besada-Portas, et al.,

2010). In this paper, a genetic algorithm is presented to

generate potential paths for UAVs in the presence of

unknown obstacles in an environment. So, the objective

is to develop an online path planning strategy for a

group of UAVs. The strategy views path planning as an

optimization problem; however, the solution is not

completely optimal but rather near-optimal. For large-

scale applications, we recommend combining the proposed

solution with graph search algorithms. But, the main

contribution of this paper is to show a software engineering

solution that integrates agent-based simulation with a

genetic algorithm package to support evolutionary path

planning.

After implementing the genetic algorithm solution to

the UAV path planning problem, the Repast agent-based

modeling and simulation platform is used to demonstrate

and validate its utility. In this paper, we demonstrate,

verify, and validate the solution using this simulator to

check whether the actual problem has been solved.

Agent-based modeling and simulation involves specifying

each individual agent and its interactions with other

agents and the environment.

Overall, this paper involves designing and simulation

of evolutionary path planning for UAVs while avoiding

collision avoidance. So, we aim to demonstrate the

simulation software engineering lifecycle from the

inception of the basic concept statement of the problem

to actual implementation of the selected UAV path

planning method. A prototype in the form of a Repast

simulation program is implemented. In Section 2, we

overview existing methods in the extant literature. Besides,

we discuss three critical elements of this project: (1)

agent-based modeling, (2) the Repast toolkit, and (3)

evolutionary path planning. In section 3, the UAV

mission scenario is introduced as a problem statement.

Analysis, design, and implementation of the solution

are discussed in section 3 as well. Screenshots of the

Repast simulator is provided to demonstrate how the

simulated mission is executed. In section 4, using the

simulation program, we illustrate the verification and

validation of the solution. In section 5, we conclude by

providing a summary of the paper along with a discussion

on potential avenues of future research.

2. Related Works

Several different approaches and mechanisms are

introduced to solve the UAV path planning problem.

Methods in the extant literature aim to find optimal

solutions depending on mission objectives and

environmental components. Finding an optimal path

often requires substantial computational time (Trovato,

1996). In some applications where the environment is

not volatile and uncertainty is minimal, it is acceptable

to allocate substantial computational resources offline

prior to mission (Sanders, et al,. 2007). However,

UAV’s path planning method should be fast enough to

support real-time planning and adaptable solutions for

complex dynamic and evolving missions. To solve this

problem, adaptive path planning (Chen 1995) has been

introduced as a basis for a potential solution. Adaptive

path planning uses past experience and learning

mechanisms to improve future performance. In other

Repast기반 진화 알고리즘을 통한 무인 비행체의 동적 경로계획 모델링 및 시뮬레이션

제27권 제2호 2018년 6월 103

words, it generates adaptive solutions based on previous

data and environmental feedback. Researchers demonstrated

the use of Evolutionary Algorithms as a viable and

effective approach to solve path planning problems

(Nokolos, et al., 2007).

Evolutionary models provide a useful and robust

technique to deal with complex problems (Nokolos, et

al., 2007). It has already been used to solve different

types of the UAV problems. Based on the conviction

that evolutionary path planning could be a candidate of

solving complex path planning problem, many different

evolutionary paths planning methods have been proposed.

In (Kragelund, et al., 2002), authors present the

application of evolution-based path planning within a

field of obstacles distributed at uncertain location. In

(Fu, et al., 2012), a new method based on genetic

algorithm is also used in the presence of uncertainty

with respect to locations of the obstacles in the

environment. In addition, the authors implemented this

solution using a simulated environment to determine its

performance using the Matlab SimulLink tool. In

(Bortoff, 2000), the authors proposed an evolutionary

path planner that can be used in a realistic and risky

scenario. Other researchers suggested evolutionary UAV

path planning using B-splice trajectory calculations to

implement realistic UAV flying trajectories (May, et

al., 2010).

Fig. 1. Basic genetic algorithm process

All evolutionary path planning methods are integrated

with the GA algorithm. EA-based path planning

algorithms use a population of solutions and random

modifications to those solutions to form a structured,

stochastic search. GAs works iteratively on a population

of candidate solutions, which are encoded to obtain a

candidate corresponding to better solution. So, most

GA based path planning methods have similar structure

based on the GA architecture (Rathbun, et al,. 2002)

and show the genetic algorithm that consists of several

steps. So, starting from the initial population, each step

for the GA algorithm, such as mutation, crossover,

selection, and evaluation provides a basic building block.

The differences between evolutionary path planning

methods are based on how they implement those basic

building blocks, environments, constraints, and goals.

The functional units of the GA algorithm shown in

Figure 1 indicate the data components such as goals,

constraints, and the path. Based on how we set up the

path, environment, UAV capability, constraints, and

goals, implementation aspects of algorithm change.

Earlier work indicates that there is ample evidence on

the viability and feasibility of the use of Genetic

Algorithms for dynamic path planning. None of these

studies were conducted in an agent-based modeling

framework. This study demonstrates how evolutionary

path planning can be introduced to improve cognitive

agent capabilities within an agent-based simulation

environment.

Repast is an agent based modeling and simulation

platform. Agent based modeling and simulation is a

new method to modeling a complex system composed

of autonomous agents. Agents have behaviors, often

described by simple rules, and interactions with other

agents, which in turn influence their behaviors. By

modeling agents individually, the full effects of the

diversity that exists among agents in their attributes

and behaviors can be observed as it gives rise to the

behaviors of the system as a whole. So, this method is

selected to develop the solution because of its ability to

model complex adaptive system relatively easily. Ability

to act autonomously is one of the most important

reasons that we choose this framework and integrate

with the actual evolutionary path planning algorithm.

김용호

104 한국시뮬레이션학회 논문지

3. Solution Analysis

3.1 Objective

The objective of this project is to demonstrate the

efficacy of the evolutionary path planning method in an

environment with multiple UAVs, targets, and obstacles

using an agent-based simulator. Furthermore, collision

avoidance and finding optimal paths are the major

performance criteria.

3.2 Tools & Software Libraries
As a whole, the project needs a base toolkit which

can allow integration of agent models with path planning

algorithm into a coherent composite model to run and

simulate the dynamics of mission. Repast is a free and

open source agent-based modeling and simulation

platform. Repast supports both the Java Programming

Language and ReLogo APIs. In addition, since the

project is aimed for agent-based simulation, Repast is

a good match for the purpose of the study.

Since UAVs generate the path based on evolutionary

mechanism, genetic algorithms and related functions

are integrated with the cognitive components of agents.

We used the Java based genetic algorithms package,

which is also open-source. The Java Genetic Algorithm

Package(JGAP) is a Genetic Algorithms Package, and

genetic programming components are provided as a

Java framework. Therefore, it is interoperable with the

Repast platform and hence easy to import, because

both libraries are built over the Java framework.

3.3 Simulation Environment & Constraints
For problem formulation, a simulation environment

that is available for proper simulation and testing is

required. It is impossible to create exact same simulation

environment as real environment. Therefore, it is

important to build a simulation environment by

considering abstraction constraints. In this project, we

used a two-dimensional airspace. Repast supports three-

dimensional space and grid environment. However, we

chose to use two-dimensional space and grid because

of its complexity. By limiting the airspace, this would

save the time to develop evolutionary algorithm, and

the idea that if an algorithm works in two dimensional

spaces it should be extended for use in a three-dimensional

space with adjustment to genetic algorithm. In addition,

even though the project is focused on UAVs, this

constraint would work for autonomous ground vehicles,

which use two-dimensional spaces.

To simplify the solution and focus on the implementation

of the GA, conditions such as weather condition, air

resistance are excluded from the problem. Since the

project concentrates on the path planning mechanism,

we disregarded the environment facts. Furthermore,

motion of UAV is also limited by grid based. In case

of aircrafts it needs a turning angle. So, because of this

limitation, UAVs are not expected to make sudden

change in their direction. However, since we would

like to focus more on evolutionary path planning as well

as entire autonomous vehicle, grid based movement of

the vehicle is sufficient for the purpose of this project.

3.4 Problem Formulation
Currently, Autonomous Vehicles play an important

role in military and civilian operations. They are often

used for reconnaissance or video recording for accessing

human unreachable areas. Since an AV still needs at

least one ground operator, the ability to control by

ground operators is important to conduct AV missions.

However, depending on the weather condition or

limitation of human ability, sometimes it is challenging

to sustain an AV in a safe mode. Because of the

limitations of human control, autonomous AV support

systems are becoming more desirable. So, this project

is focused on unmanned aerial vehicles that are able to

fly automatically by generating paths dynamically on

their own. Therefore, we assume an UAV that flies

with only limited information such as locations of targets,

and hazardous areas. Other than that UAV should be

able to fly automatically without any human control

and information starting from departure to landing. While

UAV flies, it should also able to manage collision

avoidance.

3.5 Scenario Analysis
We assumed that each AV has targets in order of

Repast기반 진화 알고리즘을 통한 무인 비행체의 동적 경로계획 모델링 및 시뮬레이션

제27권 제2호 2018년 6월 105

user defined sequence. The only input that the AV

knows is the location of the target. Starting from an

initial position, AVs move toward the first target in

their mission list. As soon as they reach first target,

they conduct surveillance and then move toward the

next target location. AVs continue to conduct their

mission, until they arrive at last target’s location. In

this scenario, we also assumed that AVs have sensors

that are able to detect collisions. The sensor has a

maximum threshold for the sensor range, so AVs can

only detect obstacles only within the sensor range. This

limitation also causes AVs to generate waypoints with

maximum of certain range from current position.

Collisions with other UAV are also avoided.

With the environmental representation and scenario

above, we transformed the abstract scenario into the

simulator as a model. The model is composed of three

major components: Objects, Path Generations, and the

Evolutionary Algorithm (EA) model. All three models

are interdependent and are integrated within the Repast

Platform. From here, we use UAV as representative of

AVs since the scenario is based on UAVs.

The Repast platform embraces all objects. Objects

are the visible components of the simulation, and they

can be divided into UAVs, Targets, and Obstacles.

Another main part of the model is Path Generator.

UAVs are able to generate the path on their own, so

path component should be designed as part of the

cognitive architecture of the UAV agent. As a result,

whenever UAVs need to get new path for safe flight,

it can be done in a real-time and without depending on

external source. Last major component is the Evolutionary

Algorithm (EA). EA takes a role of deliberation

mechanism within the cognitive architecture of the

UAV. It is fundamentally based on the genetic algorithm.

EA is used to define the parameters of a path for UAV.

Therefore, the EA component is comprised in the Path

Generator component. Whenever UAV needs to create

a path, the EA is used to create the optimal path for

the UAV.

3.6 UAV Analysis
The main component of this project is an autonomous

vehicle especially the Unmanned Aerial Vehicle. UAV

must implement correct path planning method to

conduct a successful mission. It must be able to detect

possible collisions while they are flying over the area,

and it should have an ability of generating optimal path

to the target for itself.

Initially, when the UAV is launched, a mission is

assigned to the UAV. Following the mission assignment,

all the geographic information, target’s location, and

input variables are received from the based station. As

soon as the UAV receives its inputs, it creates the

initial path to the target and heads toward that target.

If the UAV detects obstacles or another UAV using its

sensors, it will generate new path to the target while

considering collision avoidance. After the UAV reaches

its target, it will finish the current task in the mission

and start engaging with the next task. For more detail

explanation, therefore, process activity diagram could

be used to show the activities within the core control

system of the UAV. To detect obstacles in the space,

we assumed that each UAV has built-in sensors. UAV

sensors have sensor ranges that limit their perception to

certain amount of distance. Four arrows demonstrate

range length of x-axis and y-axis. Black large square

indicates the entire range of UAV’s perception.

4. Solution Design

4.1 Overview

With the knowledge of high-level structures that we

discussed above, this design phase is intended to

implement from high-level concepts into actual program

by developing the simulation software. So, the purpose

is to understand and demonstrate how well evolutionary

path planning for Unmanned Aerial Vehicle works in

an environment that has multiple UAVs and targets.

4.2 State Variables and Scales
The models, Object, Path, and EA, consist of the

following entities, which are described in Table 1.

Parameters may change during the simulation or settled

when initializing the simulator. Length of time in the

simulation is composed of time ticks. One tick is same

김용호

106 한국시뮬레이션학회 논문지

as one step of time in the simulation.

entity Parameters Descriptions

UAV

CurrentPosition
X and Y coordinate of current
Vehicle’s location

Number of vehicle The ID of the vehicles in space

Speed How fast vehicles are moving

Direction
Current direction of the vehicle
in space

arrived Check UAV finishes mission

Obstacle

Position
X and Y coordinates of current
Obstacle’s location

Number of
obstacles

The number of obstacles in space

Target
Position

X and Y coordiates of current
Target’s location

Number of Target The number of targets in space

Path

Number of
waypoints

The number of waypoints that
make a path

Map boundaries size of the space

EA

population size A group size of chromosome

Fitness value
A value that decides optimal
candidates of chromosome

The number of
generation

the number of population evolve

operators crossover OR mutation

Length of
chromosome

The number of genes in the
chromosome

Table 1. model Entities

4.3 Process Overview and Scheduling
The UAV model and the path model are updated in

every time step. This could be explained by UAV

activity diagram of the UAV agent.

During the initialization phase, the UAV receives

targets as an input. Then, it retrieves first target from

target list and gets direction to target. Before UAV

moves toward target, it needs to complete several steps.

The UAV first checks its current position with respect

to the current target position. If two positions are same,

check this target is the last target in the list in order to

finish the mission. If two positions are not same or the

target is not the last one, the UAV senses obstacles

within the sensor range. Based on the result from

detection, UAV decides whether it should move toward

the current target, generates a path using the UAV

fitness function.

UAV moves at least one grid point from current

position depending on its speed and direction. Within

every time tick, the UAV tries to detect obstacles as

well as other UAVs that are apart at most five grid

points from it. Until then, UAVs will keep going to the

first ordered target point. To assist the UAV, the path

model retains the latest path information for the UAV.

Path model keeps record of the starting position, target

position, and lists of waypoints. Then, as soon as a

UAV detects a possible collision, another model, which

is the EA model, proceeds to compute a new set of

waypoints. EA model will start calculating new path

for UAV based on the genetic algorithm, then send it

to the path model to update the current path.

As soon as the Path model requests a new path, the

EA model starts to generate new waypoints. It randomly

generates paths into population. The number of population

is set at first. Having multiple possible paths in the

population, each path gets a fitness value from the

Fitness Evaluator. Different fitness function is used

depending on whether UAV or Obstacles are detected

by UAV. Basically, calculating shortest length and

intersection rates are the main components of the fitness

function. After getting fitness value, all path candidates,

which are chromosomes in the Evolutionary Algorithm,

apply the crossover and mutation operators. Both

operators are used in the genetic algorithm to maintain

solution diversity. So, they are able to generate new

path candidates into population by retaining diverse set

of solution. Finally, the EA model chooses the best

current candidate path in population based on the fitness

value. This circulation lasts until the number of evolution

reaches to threshold, and then it returns current best

path to the Path model.

4.4 Design concepts

4.4.1 Fitness

The model seeks fitness model explicitly in the

evaluation function. Each potential individual paths

calculates its fitness value using the evaluate function.

Repast기반 진화 알고리즘을 통한 무인 비행체의 동적 경로계획 모델링 및 시뮬레이션

제27권 제2호 2018년 6월 107

The method of measuring fitness will be discussed in

a submodel.

4.4.2 Sensing

UAVs are assumed to know their status, position,

target position and sensing range. Each vehicle will

sense obstacles or other vehicles if the objects are

within their sensing range.

4.5 Initialization
A two-dimensional grid space is initially generated

by locating multiple UAVs, targets, and obstacles.

When a UAV is created, it will head for the target

following a straight line. The path consists of an array

of two integer values. Each integer value will be

encoded to IntegerGene. After that, two IntegerGenes

will be encoded by a CompositeGene. Therefore, the

CompositeGene finally becomes a waypoint. Each

CompositeGene waypoint will be the member of the

chromosome, denoting the path. Also, location of the

target and the obstacle area are determined either by

the user through parameterization or predetermined

randomly.

4.6 Input
The number of UAVs is an input variable that is

varied to test the scalability of the simulation as well

as the efficacy of the collision avoidance strategy. The

environmental change is also an input. As the locations

of obstacles change the environment also changes. The

path model will take the start position and target

position as inputs. In the EA model, genetic algorithm

has important aspects such as how to produce offspring

and set the population size. Mutation and crossover

rates are used in this model to produce optimal path

solutions for each UAV.

4.7 Submodels

4.7.1 Genetic algorithm

The general process for the application of the genetic

algorithm is as follows: (1) Sample set of potential

solutions are generated randomly. (2) Within the sample

set, poor solutions are removed while better solutions

are retained. (3) Survived samples perform some of the

operations like crossover and mutation to derive new

possible solutions. (4) Based on the fitness function,

the best possible solution is selected. (5) Step 2 to step

4 repeats until a defined criterion is satisfied. (6) Return

best possible solution as a result.

To make the genetic algorithm work effectively, a

few conditions should be met. It should be able to

evaluate how good potential solution is relative to other

potential solutions that are not optimal. The critical

components in a Genetic Algorithm are the design of

gene, the application of the evolutionary operators, and

the fitness function. The Gene represents distinct aspects

of the solution, and genes are gathered together to

define the chromosome. This chromosome representation

is important to determine how the problem is structured

in the algorithm and the genetic operators are applied.

Genetic Algorithm has two building block mechanics

as a whole, Crossover and Mutation. In Genetics,

Crossover swaps genes between two chromosomes.

Mutation randomly alters the gene in a chromosome.

Internal mechanisms are different based on the topic of

the project. Finally, all the decisions are made in

Fitness Function. After chromosomes pass through the

previous step, all they left to do is passing the fitness

function. However, to adapt genetic algorithm into real

world project, we need to make fitness function to

select a good potential solution.

4.7.2 Chromosome structure

Chromosome consists of multiple genes. Each

chromosome is based on sequence of genes from

certain value. To build a chromosome, genes must be

defined first. JGAP (Java Genetic Algorithm Package)

supports the creation of chromosomes. The genes could

be binary, floating point, integers, or symbols. Since

we are using a two-dimensional grid space, we decided

to create value of gene in Integer. JGAP has already

built an IntegerGene class and it is ready to use. So, we

put x coordinate value into that gene. However, because

IntegerGene only can contain one integer value, we

created another IntegerGene for the y coordinate value.

김용호

108 한국시뮬레이션학회 논문지

JGAP also supports the combination of two simple

genes into a combined gene, named the CompositeGene

shown in Figure 2.

CompositeGene plays a role as a waypoint of the

UAV. Therefore, chromosome is composed of multiple

of CompositeGenes which combined with two Integer

Genes x and y. then the chromosome becomes a possible

path for UAV.

Fig. 2. The Design of the chromosome

4.7.3 The Fitness Function

Within possible chromosomes, the algorithm should

be able to identify the best possible chromosome. To

distinguish every possible chromosome, chromosome in

the population will be assigned a value, which is the

fitness value. Increasing values for the fitness indicate

better performance in our design. To determine each

fitness value of chromosome, every possible chromosome

must be processed by the fitness function. In this

project, the fitness function evaluates the performance

of a path in two aspects: distance from the obstacle and

closeness to the target. These aspects are, defined in

terms of equations (1) and (2).

 (1)

Where obstacle(p) denotes the total penalty value p,

iSect(wayPi,wayPi+1) is the function that returns a value

if a line between two way points intersects with

detected obstacle.

 (2)

Where T denotes location of target and dwt(wayPi,T)

denotes distance between waypoint and target. So,

distance(p) contains total length of each way Points to

the target. In addition to these aspects, another equation

(equation (3)) is needed in case detected obstacle is a

UAV.

 (3)

Where UAV(p) denotes the total penalty value p, is

the function that returns a value if a line between two

waypoints intersects with detected another UAV. Since

each encountered UAVs generates new path simultaneously,

the collision avoidance between UAVs is expected from

this calculation.

Therefore, the fitness is computed in (4) or (5)

Fitness Value = (obstacle(p) + distance(p)) -1 (4)

Fitness Value = (obstacle(p) + distance(p) +UAV(a))-1

(5)

The return values from obstacle(p), UAV(p), and

distance(p) is optimal when both values are as lowest

as possible. However, fitness value will choose best

possible chromosome with highest value. Therefore,

final equation remains reciprocal number of sum of all

outcomes like (4) or (5).

4.7.4 Evolutionary Operators

In this paper, two operators are used the crossover

operator and the mutation operator. These two operators

play an integral role in the genetic algorithm. They

retain good candidates in the population. Operators can

be modified in many ways, but we used two methods

named Best Chromosome Crossover and All Mutation

methods. These operators operate immediately after the

fitness function. After each chromosome is assigned a

fitness value by the fitness function, Best Chromosome

Crossover will find two best fitness chromosomes from

population. Two selected chromosomes randomly choose

one of their genes and crossover all of other genes to

the end as shown in Figure 3.

In Figure 3, Gene3 is chosen randomly, then all the

remaining genes after Gene3 crossover until the last

gene. Therefore, existing genes and newly generated

Repast기반 진화 알고리즘을 통한 무인 비행체의 동적 경로계획 모델링 및 시뮬레이션

제27권 제2호 2018년 6월 109

genes are retained in the population for the next

generation. All Mutation picks a chromosome from the

population, and then randomly chooses one of the

genes. With selected gene, BCM will generate totally

new gene, new X and Y points in this project, and

replace old gene with new one. above figure provides

graphical explanation.

Figure 3 shows that the third gene randomly selected

and is replaced by new gene. So, they both become one

of the possible candidates.

Fig. 3. The Crossover Operator & The Mutation Operator

4.7.5 Evolution

Evolution is a process that generates new generation

of the path. It will evolve until the number of times

user specified. One generation cycle needs several steps.

All chromosomes in the population pass through fitness

function, and receive new fitness values. After that,

those chromosomes are transformed by two operators:

crossover and mutation. After all chromosomes are

processed, newly generated population will merge into

old Population. In the meantime, if population size is

limited, worst chromosome candidates will be dropped

from the population. With the new generated population,

another cycle is performed until the maximum number

of generation has been reached.

4.8 Implementation
Besides development of the source code of the program,

several steps must be established to run a simulation in

this Platform. The metadata that the Repast Symphony

runtime uses to help create displays and other runtime

components should be updated. The context.xml file

under the PathPlanning.rs folder should be edited as

Table 2.

<context id="PathPlanningUAV"
xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
xsi:noNamespaceSchemaLocation="http://repast.org/scenario/
context">
 <projection type="continuous space"
id="space"></projection>
 <projection type="grid" id="grid"></projection>
</context>

Table 2. context.xml

4.8.1 The Scenario Tree

Before running the simulation, we had to setup

Scenario Tree which is left side panel of the simulator

in Figure 4. The Scenario Tree is able to connect my

context builder to simulator by specifying the data

loader. (1) In the Scenario Tree, right click on the Data

Loaders and click “Set Data Loader”. (2) In the “Select

Data Source Type” window, click on “Custom

ContextBuilder Implementation. Click Next. (3)Choose

“PathPlanningUAV.pathPlanningBuilder”. Click Next

(4) Click Finish

These steps create “pathPlanningBuilder” as the name

of the Data Loader and continue to create display.

Steps are following: (1) In the Scenario Tree, Right

click on Displays and click “Add Display” (2) In the

Display configuration dialog, type Space Display for

name. Leave 2D as the type because we are using 2D

space. (3)Select space projection in the “Projection and

Value Layers” section and then click the green arrow.

The projections on the right are the ones will be

displaying and those on the left are all the possible

projections to display. (4)Click next. (5)Select UAV,

Obstacle, and Target agents. Move them to right by

clicking arrow. Click Next. (6) In this panel, we can

configure what we want the UAV, Obstacle, and Target

look like. (7) Click each agent, and open 2D shape

Editor to change colors and shapes. After setting all

three of agents, Click next (8) Click Next. Click Finish

These will create Space display under Display node

in the Scenario Tree. Save this by clicking save button

on the toolbar. Finally, we can now run our model.

김용호

110 한국시뮬레이션학회 논문지

Fig. 4. parameters

Figure 4 is depicted final Scenario Tree.

There are five parameters in this project shown in

Figure 4. numGeneration parameter is able to set up

maximum number of generation for Genetic algorithm.

The default value is 30. It is very important parameter

because it directly affects to UAV path creation.

numObstacle parameter literally creates zero or more

squared obstacles as user specified in the space. The

default value is 7. numTarget parameter creates one or

more targets that UAVs have to arrive during their

mission. The default is 4. Lastly, numUAV parameter

sets the number of UAV in the simulator. The default

value is 1.

When the program executes, it launches Repast

simulator as shown in Figure 5.The User panel on the

left (Scenario Tree, Figure 4) reveals the runtime

configuration of the model. It must be done before

running the simulation

As shown in Figure 5, we can monitor the simulation

in the middle of simulator display. We can run the

simulation by clicking the Run button at which upper

side of problem, step through each timestep with the

Step button, stop the simulation with the Stop button,

and reset it for another run with the Reset Button. I

will not cover rest of the buttons because they are not

relevant in this project.

Fig. 5. Demo Screenshot of Simulation

5. Solution Validation and verification

5.1 Verification

To ensure that the program has been built according

to the requirements and design specification, we

verified the project using three testing method; Module,

Integration, and System test. The module test shown in

Tables 3 verifies individual methods. Each function has

a pre-condition and post-condition. Pre-condition is

used for evaluating the parameters before the function

is invoked. Post-condition is used after the function

executes. Integration testing is required after all methods

tested in the module testing phase. Integration testing

combines and tests individual modules as a group.

Integration testing verifies functional, performance, and

reliability requirements placed on the critical feature

items of this project. we assumed path creation using

the genetic algorithm and correctness of the GA as

critical items for the project.

5.1.1 Module test

Functions in the table below are selected as part of

module testing because they are repeatable, consistent,

and fast. Repeatable means we can rerun the same test

as many times as we needed. Consistent means every

time we run with same parameter, we get the same result.

That is why we used BlackBox testing for this testing.

By only examining pre-condition and post-condition, we

can be assured that a function is working with respect

to its functional specification.

Repast기반 진화 알고리즘을 통한 무인 비행체의 동적 경로계획 모델링 및 시뮬레이션

제27권 제2호 2018년 6월 111

5.1.2 Integration Test

(1) Path Creation using a Genetic Algorithm

To illustrate integration testing, we choose path

creation mechanism that involves integration of the

simulator with the genetic algorithm functionality. To

generate a path, multiple methods are combined and

orchestrated, and it can be done via System Sequence

Diagram. In addition, the Genetic Algorithm requires

computational time to calculate fitness values and to

evolve candidate paths.

To check whether the system actually generates the

best possible path as an output, we configured the

system to display the path information during every

each generation. Figure 6 shows the output trace. Detail

explanation of Figure 6 is following: Number indicates

the number of evolution in Genetic Algorithm. Size total

length of chromosome. Fitness Value the value that

determines best chromosome. Alleles List of waypoints.

By checking the output information above as well as

monitoring the visualization, the system was tested with

respect to its functional, performance and reliability

aspects.

Fig. 6. Best candidate chromosome information
on console output

(2) Correctness of Genetic algorithm

In this task we checked the correctness of our

implementation of the Genetic Algorithm. Even though

paths are generated within the system as discussed

before, we cannot be sure whether the algorithm is

actually producing an optimal path. To verify correctness

of the algorithm, we used the time step which translates

into a time tick in the simulator. There are two reasons

for using the time tick:

• Based on the theory of the Genetic Algorithms,

the more the number of generations in a Genetic

Name of function pre condition post condition

getDirection receive target location and knows current location returns direction to target in degrees

list of gridcells where obstacles possibly exist returns the number of detected obstaclesradar

almostEqual receives two gridpoints
returns true if two points are almost equal,
false otherwise

list of multiple waypoints moves UAV next waypointForward

createPath UAV detects obstacle generate new path

UAV detects other UAV generate new pathcreatePathUAV

GAsetup UAV calls createPath method Initialize GA model

GAconfiguration GA algorithm initialized settings for genetic algorithm

pathToGene GA model instantiated
Perform genetic algorithm and return
waypoints

generatePath function receives best possible chromosome Transform chromosome to waypoints

IsInterSect
Two waypoints are given and one gridpoint to
check collision

Returns true if gridpoints lies on line between
two waypoints, false otherwise

nearFromObstacle Receives a candidate chromosome returns fitness value of the chromosome

findshortest receives a candidate chromosome returns fitness value of the chromosome

Distancebetweenpoint Two points are given returns distance between two points in double

getPositionGene
Function receives a chromosome and
index number to get

returns a gene of specified index in
chromosome

Table 3. UAV & Genetic algorithm & Fitness Function conditions

김용호

112 한국시뮬레이션학회 논문지

Algorithm, the higher the possibility of generating

an optimal path

• The UAVs make at least one move for the target

in every time step.

For UAV, optimal path in free space would be a

straight line to the target. If the distance between UAV

and target is 10 in grid space, UAV will need 10 tick

of time to reach the target point because UAV makes

a move in every time step. However, when the UAV

encounters an obstacle and invokes the genetic algorithm,

a path comprised of multiple waypoints is created. As

we described before, the larger the number of evolutionary

generations in genetic algorithm, the higher the fitness

of the generated path. An optimal path is one that is

close target, able to avoid obstacle, and short. Therefore,

the less time ticks are expected with large number of

evolutionary generations. Based on these reasons, the

testing checks the time tick to verify “how long does

UAV take to get to all the targets”. Following Figure

7 and Table 4 show the observed results.

The above results are showing that as the number of

generations increases, UAV’s path get close to near

optimal. Therefore, we can verify that our genetic

algorithm is functioning correctly.

Fig. 7. Fitness value of the generated path

The Number of Evolutionary Generations Tick Count

10 720

20 559

30 513

50 449

Table 4. Observed generation result per Time Tick

5.2 Validation
We compared specified requirements, which are

proposed during initial phase, with finished product in

order to ensure that the product actually meets the

user’s requirements.

• The program should be able to show visual

display to user.

• The simulation must be able to test path planning

mechanism of UAV in the simulator

• Each UAV must avoid collision with obstacles

and other UAVs

• UAV must reach the assigned targets in the

correct order

5.2.1 validation Testing

In order to validate the overall operation of the

simulation, we tested with 3 UAVs, 7 squared obstacles,

and 4 targets as shown in Figure 8. we only concentrate

on the path of one UAV (blue colored, pointed by black

arrow in Figure 8). The order of targets for this UAV

is also numbered in Figure 8. In addition, Path to target

#1 is expected similar to Red and Blue paths in Figure 8.

Fig. 8. Simulation Results

Repast기반 진화 알고리즘을 통한 무인 비행체의 동적 경로계획 모델링 및 시뮬레이션

제27권 제2호 2018년 6월 113

Figure 8 shows that UAV is detecting the first

obstacle (on the Left) and avoiding from it (on the

Right). This also demonstrates that Path is almost near

optimal as we expected in Figure 8. Circumstance that

is depicted in Figure 8 demonstrates UAV collision

avoidance. Two UAVs are aware of another UAV’s

movement. So, they immediately calculate new path.

The new path is avoiding from collision as well as

towards to next target. Lastly, UAV visited all targets

and arrived last target location shown in Figure 8.

6. Conclusion

In this paper, a new simulation method based on

Genetic Algorithms is presented to realize dynamic

UAV path planning in an environment with obstacle

and multiple target points. The path planning model is

based on a two-dimensional grid map. Adaptive

evolutionary planning is adopted based on a set of

criteria to generate path to avoid obstacles as well as

other UAVs. The simulation model is implemented

using the Repast platform to visualize and test the

simulated scenario. The modeling and simulation study

of dynamic path planning is conducted in accordance

with the software engineering life cycle.

As simulation results indicate, evolutionary path

planning using genetic algorithms has potential to

improve adaptivity of autonomous vehicle. Even though

the algorithm does not return the best path, it demonstrates

that collisions can be avoided from obstacles as well as

moving obstacles using the near optimal path. This path

planning mechanism demonstrates that it can be used in

volatile environments as depicted by the scenarios used

in this project.

Since the evolutionary dynamic path planning enables

us the ability of collision avoidance while generating

near optimal paths in real time, future research is

warranted. The scenarios can be simulated under more

realistic environment with accurate turning angles, speed,

and altitude of vehicle. This presents additional challenges

in design and implementation because of its computational

complexity, but it would give more accurate results

than the current simulation does. Once the algorithm is

verified with acceptable results, the final step would be

testing with real AVs in real world with appropriate

missions.

References

Besada-Portas E, de la Torre L, de la Cruz J.M, & de

Andrés-Toro, B. (2010). Evolutionary Trajectory

Planner for Multiple UAVs in Realistic Scenarios.

Robotics, IEEE Transactions. 619-634. doi: 10.1109

/TRO.2010.2048610

Bortoff, S. A. (2000). Path planning for UAVs. In Proc.

of the American Control Conference, pages 364–

368, Chicago, IL.

Ioannis K. Nokolos, Eleftherios S. Zografos, and Athina

N. Brintaki. UAV Path Planning Using Evolutionary

Algorithm. p77-78 (2007).

J.M de la Cruz, E. Besada-Portas, L Torre-Cubillo.

(2008). Evolutionary Path Planner for UAVs in

Realistic Environments.

Kan Ee May, Ho Jiun Sien, Yeo Swee Ping, & Shao

Zhen Hai. (2010). An evolutionary algorithm for

multiple waypoints planning with B-spline trajectory

generation for Unmanned Aerial Vehicles (UAVs).

Computational Problem-Solving (ICCP). 77-81, 3-5

Dec. 2010

McLain, T. W. and Beard, R. W. (2000). Trajectory

planning for coordinated rendezvous of unmanned

air vehicles. In Proc. of AIAA Guidance, Navigation

and Control Conference, Denver, CO.

Nikolos I.K, Valavanis K.P, Tsourveloudis N.C, &

Kostaras A.N. (2003). Evolutionary algorithm based

offline/online path planner for UAV navigation.

Systems, Man, and Cybernetics, Part B: Cybernetics,

IEEE Transactions. 898- 912, doi: 10.1109/TSMCB.

2002.804370

Pang C. Chen. (1995). Adaptive Path Planing: Algorithm

and Analysis. IEEE international conference on

Robotics and automation.

Rathbun, D.; Kragelund, S.; Pongpunwattana,A.; Capozzi,

B (2002).,.Digital avionics Systems Conference,

vol.2, 8D2-1-8D2-12 doi: 10.1109/DASC.2002.1052946

Rathbun D. Kragelund S, Pongpunwattana A, & Capozzi,

김용호

114 한국시뮬레이션학회 논문지

B. (2002). An evolution based path planning

algorithm for autonomous motion of a UAV

through uncertain environments, Digital Avionics

Systems Conference, 2002. Proceedings. The 21st.

8D2-1- 8D2-12 doi: 10.1109/DASC.2002.1052946

Sanders G, & Ray T. (2007). Optimal offline path

planning of a fixed wing unmanned aerial vehicle

(UAV) using an evolutionary algorithm. Evolutionary

Computation.4410-4416, 25-28. doi: 10.1109/CEC.

2007.4425048

Si-Yao Fu, Li-Wei Han, Yu Tian, & Guo-Sheng Yang.

(2012). Path planning for unmanned aerial vehicle

based on genetic algorithm. Cognitive Informatics

& Cognitive Computing. 2012 IEEE 11th International

Conference. 140-144, 22-24 doi:10.1109/ICCI-CC.

2012.6311139

Trovato, K.I. 1996. A* Planning in Discrete Configuration

Spaces of Autonomous Systems. PhD thesis,

Amsterdam University, 1996.

김 용 호 (yzk0302@gmail.com)

2011 미국 Auburn University, Wireless Software Engineering, BSE
2013 미국 Auburn University, Software Engineering, MSwE
2013.09 ~ 현재 국방과학연구소 연구원

관심분야 : 국방시스템, 소프트웨어 공학, 실시간 임베디드 시스템, 모델링&시뮬레이션

