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1. Introduction

Autonomous vehicles such as unmanned aerial vehicles, 

robots, and unmanned ground vehicles are on demand 

by military and civilian operations (Cruz, et al., 2008). 

Such vehicles are capable of conducting high-level 

missions of tasks, as well as low-level actions without 

direct human control. Using such autonomous vehicles 

hazardous missions, such as exploration of planets in 

the universe, battlefield missions, and nuclear operations 

can be achieved safely. New simulation models, command 

and control mechanism and simulation tools have been 

developed to tackle issues for different aspects of the 

autonomous vehicle control problems. Currently, a UAV 

is operated by at least one ground operator. However, 
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요   약

무인 비행체의 실시간 경로계획 생성 시 최적의 경로를 찾기 위한 다양한 연구가 진행되어 왔다. 본 논문에서는 진화알고

리즘을 통한 무인비행체의 경로계획 생성을 수행하고, 이를 에이전트 기반 시뮬레이션 환경에서 구현 및 테스트가 가능함을 

검증하였다. 이를 위해, Repast toolkit에 JGAP 패키지를 탑재하여 Java 기반의 유전 알고리즘 프로그래밍을 통한 무인 

비행체의 경로 계획을 생성하였고, 해당 결과를 에이전트 기반으로 시뮬레이션을 수행하였다. 본 논문에서는 에이전트 기반 

시뮬레이션 소프트웨어를 소프트웨어 공학 개발 생명주기에 맞춰 문서화하여 설계 및 구현되었으며, 에이전트 모델링 설계는 

자동화, 적응성 및 에이전트 간의 상호 작용에 초점을 맞추었다. 또한, 시뮬레이션을 통해 에이전트 기반 환경에서 설계한 

모델 및 시나리오를 검증하여 다수의 비행 에이전트에 내재된 동적 경로계획 알고리즘이 실시간으로 자율적인 경로 생성이 

가능함을 증명하였다.
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the objective is to improve autonomy of such vehicles. 

To facilitate autonomic behavior, one of the challenge 

problems in autonomous vehicle development involves 

development of advanced dynamic path planning methods.

Path planning can be divided into two components, 

online and offline path planning. Offline path planning 

requires complete knowledge of the environment. So, 

all UAVs know locations of targets, obstacles, and 

geometry. With that information, they can generate 

optimal paths; however, it calculation of such paths is 

time consuming (Nikolos, et al., 2003). Many proposed 

path planning mechanisms are based on offline methods. 

In online path planning, UAVs fly with only limited 

information such as target’s location, or mission tasks. 

Since online path planning mechanism does not have 

complete information, it is challenging to compute 

optimal path; on the other hand, computation cost is 

lower. Genetic algorithms mimic evolutionary biology, 

which involves the study of evolutionary process of 

human nature. Genetic algorithm is selected because 

research shows that evolutionary path planning could 

be an efficient and effective solution to path planning 

for swarm of unmanned vehicles (Besada-Portas, et al., 

2010). In this paper, a genetic algorithm is presented to 

generate potential paths for UAVs in the presence of 

unknown obstacles in an environment. So, the objective 

is to develop an online path planning strategy for a 

group of UAVs. The strategy views path planning as an 

optimization problem; however, the solution is not 

completely optimal but rather near-optimal. For large- 

scale applications, we recommend combining the proposed 

solution with graph search algorithms. But, the main 

contribution of this paper is to show a software engineering 

solution that integrates agent-based simulation with a 

genetic algorithm package to support evolutionary path 

planning.

After implementing the genetic algorithm solution to 

the UAV path planning problem, the Repast agent-based 

modeling and simulation platform is used to demonstrate 

and validate its utility. In this paper, we demonstrate, 

verify, and validate the solution using this simulator to 

check whether the actual problem has been solved. 

Agent-based modeling and simulation involves specifying 

each individual agent and its interactions with other 

agents and the environment. 

Overall, this paper involves designing and simulation 

of evolutionary path planning for UAVs while avoiding 

collision avoidance. So, we aim to demonstrate the 

simulation software engineering lifecycle from the 

inception of the basic concept statement of the problem 

to actual implementation of the selected UAV path 

planning method. A prototype in the form of a Repast 

simulation program is implemented. In Section 2, we 

overview existing methods in the extant literature. Besides, 

we discuss three critical elements of this project: (1) 

agent-based modeling, (2) the Repast toolkit, and (3) 

evolutionary path planning. In section 3, the UAV 

mission scenario is introduced as a problem statement. 

Analysis, design, and implementation of the solution 

are discussed in section 3 as well. Screenshots of the 

Repast simulator is provided to demonstrate how the 

simulated mission is executed. In section 4, using the 

simulation program, we illustrate the verification and 

validation of the solution. In section 5, we conclude by 

providing a summary of the paper along with a discussion 

on potential avenues of future research. 

2. Related Works

Several different approaches and mechanisms are 

introduced to solve the UAV path planning problem. 

Methods in the extant literature aim to find optimal 

solutions depending on mission objectives and 

environmental components. Finding an optimal path 

often requires substantial computational time (Trovato, 

1996). In some applications where the environment is 

not volatile and uncertainty is minimal, it is acceptable 

to allocate substantial computational resources offline 

prior to mission (Sanders, et al,. 2007). However, 

UAV’s path planning method should be fast enough to 

support real-time planning and adaptable solutions for 

complex dynamic and evolving missions. To solve this 

problem, adaptive path planning (Chen 1995) has been 

introduced as a basis for a potential solution. Adaptive 

path planning uses past experience and learning 

mechanisms to improve future performance. In other 
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words, it generates adaptive solutions based on previous 

data and environmental feedback. Researchers demonstrated 

the use of Evolutionary Algorithms as a viable and 

effective approach to solve path planning problems 

(Nokolos, et al., 2007). 

Evolutionary models provide a useful and robust 

technique to deal with complex problems (Nokolos, et 

al., 2007). It has already been used to solve different 

types of the UAV problems. Based on the conviction 

that evolutionary path planning could be a candidate of 

solving complex path planning problem, many different 

evolutionary paths planning methods have been proposed. 

In (Kragelund, et al., 2002), authors present the 

application of evolution-based path planning within a 

field of obstacles distributed at uncertain location. In 

(Fu, et al., 2012), a new method based on genetic 

algorithm is also used in the presence of uncertainty 

with respect to locations of the obstacles in the 

environment. In addition, the authors implemented this 

solution using a simulated environment to determine its 

performance using the Matlab SimulLink tool. In 

(Bortoff, 2000), the authors proposed an evolutionary 

path planner that can be used in a realistic and risky 

scenario. Other researchers suggested evolutionary UAV 

path planning using B-splice trajectory calculations to 

implement realistic UAV flying trajectories (May, et 

al., 2010). 

Fig. 1. Basic genetic algorithm process 

All evolutionary path planning methods are integrated 

with the GA algorithm. EA-based path planning 

algorithms use a population of solutions and random 

modifications to those solutions to form a structured, 

stochastic search. GAs works iteratively on a population 

of candidate solutions, which are encoded to obtain a 

candidate corresponding to better solution. So, most 

GA based path planning methods have similar structure 

based on the GA architecture (Rathbun, et al,. 2002) 

and show the genetic algorithm that consists of several 

steps. So, starting from the initial population, each step 

for the GA algorithm, such as mutation, crossover, 

selection, and evaluation provides a basic building block. 

The differences between evolutionary path planning 

methods are based on how they implement those basic 

building blocks, environments, constraints, and goals.

The functional units of the GA algorithm shown in 

Figure 1 indicate the data components such as goals, 

constraints, and the path. Based on how we set up the 

path, environment, UAV capability, constraints, and 

goals, implementation aspects of algorithm change. 

Earlier work indicates that there is ample evidence on 

the viability and feasibility of the use of Genetic 

Algorithms for dynamic path planning. None of these 

studies were conducted in an agent-based modeling 

framework. This study demonstrates how evolutionary 

path planning can be introduced to improve cognitive 

agent capabilities within an agent-based simulation 

environment.

Repast is an agent based modeling and simulation 

platform. Agent based modeling and simulation is a 

new method to modeling a complex system composed 

of autonomous agents. Agents have behaviors, often 

described by simple rules, and interactions with other 

agents, which in turn influence their behaviors. By 

modeling agents individually, the full effects of the 

diversity that exists among agents in their attributes 

and behaviors can be observed as it gives rise to the 

behaviors of the system as a whole. So, this method is 

selected to develop the solution because of its ability to 

model complex adaptive system relatively easily. Ability 

to act autonomously is one of the most important 

reasons that we choose this framework and integrate 

with the actual evolutionary path planning algorithm.
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3. Solution Analysis

3.1 Objective

The objective of this project is to demonstrate the 

efficacy of the evolutionary path planning method in an 

environment with multiple UAVs, targets, and obstacles 

using an agent-based simulator. Furthermore, collision 

avoidance and finding optimal paths are the major 

performance criteria.

3.2 Tools & Software Libraries
As a whole, the project needs a base toolkit which 

can allow integration of agent models with path planning 

algorithm into a coherent composite model to run and 

simulate the dynamics of mission. Repast is a free and 

open source agent-based modeling and simulation 

platform. Repast supports both the Java Programming 

Language and ReLogo APIs. In addition, since the 

project is aimed for agent-based simulation, Repast is 

a good match for the purpose of the study. 

Since UAVs generate the path based on evolutionary 

mechanism, genetic algorithms and related functions 

are integrated with the cognitive components of agents. 

We used the Java based genetic algorithms package, 

which is also open-source. The Java Genetic Algorithm 

Package(JGAP) is a Genetic Algorithms Package, and 

genetic programming components are provided as a 

Java framework. Therefore, it is interoperable with the 

Repast platform and hence easy to import, because 

both libraries are built over the Java framework.

3.3 Simulation Environment & Constraints
For problem formulation, a simulation environment 

that is available for proper simulation and testing is 

required. It is impossible to create exact same simulation 

environment as real environment. Therefore, it is 

important to build a simulation environment by 

considering abstraction constraints. In this project, we 

used a two-dimensional airspace. Repast supports three- 

dimensional space and grid environment. However, we 

chose to use two-dimensional space and grid because 

of its complexity. By limiting the airspace, this would 

save the time to develop evolutionary algorithm, and 

the idea that if an algorithm works in two dimensional 

spaces it should be extended for use in a three-dimensional 

space with adjustment to genetic algorithm. In addition, 

even though the project is focused on UAVs, this 

constraint would work for autonomous ground vehicles, 

which use two-dimensional spaces.

To simplify the solution and focus on the implementation 

of the GA, conditions such as weather condition, air 

resistance are excluded from the problem. Since the 

project concentrates on the path planning mechanism, 

we disregarded the environment facts. Furthermore, 

motion of UAV is also limited by grid based. In case 

of aircrafts it needs a turning angle. So, because of this 

limitation, UAVs are not expected to make sudden 

change in their direction. However, since we would 

like to focus more on evolutionary path planning as well 

as entire autonomous vehicle, grid based movement of 

the vehicle is sufficient for the purpose of this project.

3.4 Problem Formulation
Currently, Autonomous Vehicles play an important 

role in military and civilian operations. They are often 

used for reconnaissance or video recording for accessing 

human unreachable areas. Since an AV still needs at 

least one ground operator, the ability to control by 

ground operators is important to conduct AV missions. 

However, depending on the weather condition or 

limitation of human ability, sometimes it is challenging 

to sustain an AV in a safe mode. Because of the 

limitations of human control, autonomous AV support 

systems are becoming more desirable. So, this project 

is focused on unmanned aerial vehicles that are able to 

fly automatically by generating paths dynamically on 

their own. Therefore, we assume an UAV that flies 

with only limited information such as locations of targets, 

and hazardous areas. Other than that UAV should be 

able to fly automatically without any human control 

and information starting from departure to landing. While 

UAV flies, it should also able to manage collision 

avoidance.

3.5 Scenario Analysis
We assumed that each AV has targets in order of 
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user defined sequence. The only input that the AV 

knows is the location of the target. Starting from an 

initial position, AVs move toward the first target in 

their mission list. As soon as they reach first target, 

they conduct surveillance and then move toward the 

next target location. AVs continue to conduct their 

mission, until they arrive at last target’s location. In 

this scenario, we also assumed that AVs have sensors 

that are able to detect collisions. The sensor has a 

maximum threshold for the sensor range, so AVs can 

only detect obstacles only within the sensor range. This 

limitation also causes AVs to generate waypoints with 

maximum of certain range from current position. 

Collisions with other UAV are also avoided.

With the environmental representation and scenario 

above, we transformed the abstract scenario into the 

simulator as a model. The model is composed of three 

major components: Objects, Path Generations, and the 

Evolutionary Algorithm (EA) model. All three models 

are interdependent and are integrated within the Repast 

Platform. From here, we use UAV as representative of 

AVs since the scenario is based on UAVs.

The Repast platform embraces all objects. Objects 

are the visible components of the simulation, and they 

can be divided into UAVs, Targets, and Obstacles. 

Another main part of the model is Path Generator. 

UAVs are able to generate the path on their own, so 

path component should be designed as part of the 

cognitive architecture of the UAV agent. As a result, 

whenever UAVs need to get new path for safe flight, 

it can be done in a real-time and without depending on 

external source. Last major component is the Evolutionary 

Algorithm (EA). EA takes a role of deliberation 

mechanism within the cognitive architecture of the 

UAV. It is fundamentally based on the genetic algorithm. 

EA is used to define the parameters of a path for UAV. 

Therefore, the EA component is comprised in the Path 

Generator component. Whenever UAV needs to create 

a path, the EA is used to create the optimal path for 

the UAV. 

3.6 UAV Analysis
The main component of this project is an autonomous 

vehicle especially the Unmanned Aerial Vehicle. UAV 

must implement correct path planning method to 

conduct a successful mission. It must be able to detect 

possible collisions while they are flying over the area, 

and it should have an ability of generating optimal path 

to the target for itself. 

Initially, when the UAV is launched, a mission is 

assigned to the UAV. Following the mission assignment, 

all the geographic information, target’s location, and 

input variables are received from the based station. As 

soon as the UAV receives its inputs, it creates the 

initial path to the target and heads toward that target. 

If the UAV detects obstacles or another UAV using its 

sensors, it will generate new path to the target while 

considering collision avoidance. After the UAV reaches 

its target, it will finish the current task in the mission 

and start engaging with the next task. For more detail 

explanation, therefore, process activity diagram could 

be used to show the activities within the core control 

system of the UAV. To detect obstacles in the space, 

we assumed that each UAV has built-in sensors. UAV 

sensors have sensor ranges that limit their perception to 

certain amount of distance. Four arrows demonstrate 

range length of x-axis and y-axis. Black large square 

indicates the entire range of UAV’s perception.

4. Solution Design

4.1 Overview

With the knowledge of high-level structures that we 

discussed above, this design phase is intended to 

implement from high-level concepts into actual program 

by developing the simulation software. So, the purpose 

is to understand and demonstrate how well evolutionary 

path planning for Unmanned Aerial Vehicle works in 

an environment that has multiple UAVs and targets.

4.2 State Variables and Scales
The models, Object, Path, and EA, consist of the 

following entities, which are described in Table 1. 

Parameters may change during the simulation or settled 

when initializing the simulator. Length of time in the 

simulation is composed of time ticks. One tick is same 
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as one step of time in the simulation. 

entity Parameters Descriptions

UAV

CurrentPosition
X and Y coordinate of current 
Vehicle’s location

Number of vehicle The ID of the vehicles in space

Speed How fast vehicles are moving

Direction
Current direction of the vehicle 
in space

arrived Check UAV finishes mission

Obstacle

Position
X and Y coordinates of current 
Obstacle’s location

Number of 
obstacles

The number of obstacles in space

Target
Position

X and Y coordiates of current 
Target’s location

Number of Target The number of targets in space

Path

Number of 
waypoints

The number of waypoints that 
make a path

Map boundaries size of the space

EA

population size A group size of chromosome

Fitness value
A value that decides optimal 
candidates of chromosome

The number of 
generation

the number of population evolve

operators crossover OR mutation

Length of 
chromosome

The number of genes in the 
chromosome

Table 1. model Entities

4.3 Process Overview and Scheduling
The UAV model and the path model are updated in 

every time step. This could be explained by UAV 

activity diagram of the UAV agent.

During the initialization phase, the UAV receives 

targets as an input. Then, it retrieves first target from 

target list and gets direction to target. Before UAV 

moves toward target, it needs to complete several steps. 

The UAV first checks its current position with respect 

to the current target position. If two positions are same, 

check this target is the last target in the list in order to 

finish the mission. If two positions are not same or the 

target is not the last one, the UAV senses obstacles 

within the sensor range. Based on the result from 

detection, UAV decides whether it should move toward 

the current target, generates a path using the UAV 

fitness function.

UAV moves at least one grid point from current 

position depending on its speed and direction. Within 

every time tick, the UAV tries to detect obstacles as 

well as other UAVs that are apart at most five grid 

points from it. Until then, UAVs will keep going to the 

first ordered target point. To assist the UAV, the path 

model retains the latest path information for the UAV. 

Path model keeps record of the starting position, target 

position, and lists of waypoints. Then, as soon as a 

UAV detects a possible collision, another model, which 

is the EA model, proceeds to compute a new set of 

waypoints. EA model will start calculating new path 

for UAV based on the genetic algorithm, then send it 

to the path model to update the current path.

As soon as the Path model requests a new path, the 

EA model starts to generate new waypoints. It randomly 

generates paths into population. The number of population 

is set at first. Having multiple possible paths in the 

population, each path gets a fitness value from the 

Fitness Evaluator. Different fitness function is used 

depending on whether UAV or Obstacles are detected 

by UAV. Basically, calculating shortest length and 

intersection rates are the main components of the fitness 

function. After getting fitness value, all path candidates, 

which are chromosomes in the Evolutionary Algorithm, 

apply the crossover and mutation operators. Both 

operators are used in the genetic algorithm to maintain 

solution diversity. So, they are able to generate new 

path candidates into population by retaining diverse set 

of solution. Finally, the EA model chooses the best 

current candidate path in population based on the fitness 

value. This circulation lasts until the number of evolution 

reaches to threshold, and then it returns current best 

path to the Path model.

4.4 Design concepts

4.4.1 Fitness

The model seeks fitness model explicitly in the 

evaluation function. Each potential individual paths 

calculates its fitness value using the evaluate function. 
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The method of measuring fitness will be discussed in 

a submodel.

4.4.2 Sensing

UAVs are assumed to know their status, position, 

target position and sensing range. Each vehicle will 

sense obstacles or other vehicles if the objects are 

within their sensing range. 

4.5 Initialization
A two-dimensional grid space is initially generated 

by locating multiple UAVs, targets, and obstacles. 

When a UAV is created, it will head for the target 

following a straight line. The path consists of an array 

of two integer values. Each integer value will be 

encoded to IntegerGene. After that, two IntegerGenes 

will be encoded by a CompositeGene. Therefore, the 

CompositeGene finally becomes a waypoint. Each 

CompositeGene waypoint will be the member of the 

chromosome, denoting the path. Also, location of the 

target and the obstacle area are determined either by 

the user through parameterization or predetermined 

randomly.

4.6 Input
The number of UAVs is an input variable that is 

varied to test the scalability of the simulation as well 

as the efficacy of the collision avoidance strategy. The 

environmental change is also an input. As the locations 

of obstacles change the environment also changes. The 

path model will take the start position and target 

position as inputs. In the EA model, genetic algorithm 

has important aspects such as how to produce offspring 

and set the population size. Mutation and crossover 

rates are used in this model to produce optimal path 

solutions for each UAV. 

4.7 Submodels

4.7.1 Genetic algorithm

The general process for the application of the genetic 

algorithm is as follows: (1) Sample set of potential 

solutions are generated randomly. (2) Within the sample 

set, poor solutions are removed while better solutions 

are retained. (3) Survived samples perform some of the 

operations like crossover and mutation to derive new 

possible solutions. (4) Based on the fitness function, 

the best possible solution is selected. (5) Step 2 to step 

4 repeats until a defined criterion is satisfied. (6) Return 

best possible solution as a result.

To make the genetic algorithm work effectively, a 

few conditions should be met. It should be able to 

evaluate how good potential solution is relative to other 

potential solutions that are not optimal. The critical 

components in a Genetic Algorithm are the design of 

gene, the application of the evolutionary operators, and 

the fitness function. The Gene represents distinct aspects 

of the solution, and genes are gathered together to 

define the chromosome. This chromosome representation 

is important to determine how the problem is structured 

in the algorithm and the genetic operators are applied. 

Genetic Algorithm has two building block mechanics 

as a whole, Crossover and Mutation. In Genetics, 

Crossover swaps genes between two chromosomes. 

Mutation randomly alters the gene in a chromosome. 

Internal mechanisms are different based on the topic of 

the project. Finally, all the decisions are made in 

Fitness Function. After chromosomes pass through the 

previous step, all they left to do is passing the fitness 

function. However, to adapt genetic algorithm into real 

world project, we need to make fitness function to 

select a good potential solution.

4.7.2 Chromosome structure

Chromosome consists of multiple genes. Each 

chromosome is based on sequence of genes from 

certain value. To build a chromosome, genes must be 

defined first. JGAP (Java Genetic Algorithm Package) 

supports the creation of chromosomes. The genes could 

be binary, floating point, integers, or symbols. Since 

we are using a two-dimensional grid space, we decided 

to create value of gene in Integer. JGAP has already 

built an IntegerGene class and it is ready to use. So, we 

put x coordinate value into that gene. However, because 

IntegerGene only can contain one integer value, we 

created another IntegerGene for the y coordinate value. 
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JGAP also supports the combination of two simple 

genes into a combined gene, named the CompositeGene 

shown in Figure 2.

CompositeGene plays a role as a waypoint of the 

UAV. Therefore, chromosome is composed of multiple 

of CompositeGenes which combined with two Integer 

Genes x and y. then the chromosome becomes a possible 

path for UAV.

Fig. 2. The Design of the chromosome

4.7.3 The Fitness Function

Within possible chromosomes, the algorithm should 

be able to identify the best possible chromosome. To 

distinguish every possible chromosome, chromosome in 

the population will be assigned a value, which is the 

fitness value. Increasing values for the fitness indicate 

better performance in our design. To determine each 

fitness value of chromosome, every possible chromosome 

must be processed by the fitness function. In this 

project, the fitness function evaluates the performance 

of a path in two aspects: distance from the obstacle and 

closeness to the target. These aspects are, defined in 

terms of equations (1) and (2).

 




 (1)

Where obstacle(p) denotes the total penalty value p, 

iSect(wayPi,wayPi+1) is the function that returns a value 

if a line between two way points intersects with 

detected obstacle. 

 




 (2)

Where T denotes location of target and dwt(wayPi,T) 

denotes distance between waypoint and target. So, 

distance(p) contains total length of each way Points to 

the target. In addition to these aspects, another equation 

(equation (3)) is needed in case detected obstacle is a 

UAV. 

 




 (3)

Where UAV(p) denotes the total penalty value p, is 

the function that returns a value if a line between two 

waypoints intersects with detected another UAV. Since 

each encountered UAVs generates new path simultaneously, 

the collision avoidance between UAVs is expected from 

this calculation.   

Therefore, the fitness is computed in (4) or (5)

Fitness Value = (obstacle(p) + distance(p)) -1 (4)

Fitness Value = (obstacle(p) + distance(p) +UAV(a))-1

(5)

The return values from obstacle(p), UAV(p), and 

distance(p) is optimal when both values are as lowest 

as possible. However, fitness value will choose best 

possible chromosome with highest value. Therefore, 

final equation remains reciprocal number of sum of all 

outcomes like (4) or (5). 

4.7.4 Evolutionary Operators

In this paper, two operators are used the crossover 

operator and the mutation operator. These two operators 

play an integral role in the genetic algorithm. They 

retain good candidates in the population. Operators can 

be modified in many ways, but we used two methods 

named Best Chromosome Crossover and All Mutation 

methods. These operators operate immediately after the 

fitness function. After each chromosome is assigned a 

fitness value by the fitness function, Best Chromosome 

Crossover will find two best fitness chromosomes from 

population. Two selected chromosomes randomly choose 

one of their genes and crossover all of other genes to 

the end as shown in Figure 3.

In Figure 3, Gene3 is chosen randomly, then all the 

remaining genes after Gene3 crossover until the last 

gene. Therefore, existing genes and newly generated 
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genes are retained in the population for the next 

generation. All Mutation picks a chromosome from the 

population, and then randomly chooses one of the 

genes. With selected gene, BCM will generate totally 

new gene, new X and Y points in this project, and 

replace old gene with new one. above figure provides 

graphical explanation.

Figure 3 shows that the third gene randomly selected 

and is replaced by new gene. So, they both become one 

of the possible candidates. 

Fig. 3. The Crossover Operator & The Mutation Operator

4.7.5 Evolution

Evolution is a process that generates new generation 

of the path. It will evolve until the number of times 

user specified. One generation cycle needs several steps. 

All chromosomes in the population pass through fitness 

function, and receive new fitness values. After that, 

those chromosomes are transformed by two operators: 

crossover and mutation. After all chromosomes are 

processed, newly generated population will merge into 

old Population. In the meantime, if population size is 

limited, worst chromosome candidates will be dropped 

from the population. With the new generated population, 

another cycle is performed until the maximum number 

of generation has been reached.

4.8 Implementation
Besides development of the source code of the program, 

several steps must be established to run a simulation in 

this Platform. The metadata that the Repast Symphony 

runtime uses to help create displays and other runtime 

components should be updated. The context.xml file 

under the PathPlanning.rs folder should be edited as 

Table 2.

<context id="PathPlanningUAV" 
xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance 
xsi:noNamespaceSchemaLocation="http://repast.org/scenario/ 
context">
  <projection type="continuous space" 
id="space"></projection>
  <projection type="grid" id="grid"></projection>
</context> 

Table 2. context.xml

4.8.1 The Scenario Tree

Before running the simulation, we had to setup 

Scenario Tree which is left side panel of the simulator 

in Figure 4. The Scenario Tree is able to connect my 

context builder to simulator by specifying the data 

loader. (1) In the Scenario Tree, right click on the Data 

Loaders and click “Set Data Loader”. (2) In the “Select 

Data Source Type” window, click on “Custom 

ContextBuilder Implementation. Click Next. (3)Choose 

“PathPlanningUAV.pathPlanningBuilder”. Click Next 

(4) Click Finish

These steps create “pathPlanningBuilder” as the name 

of the Data Loader and continue to create display. 

Steps are following: (1) In the Scenario Tree, Right 

click on Displays and click “Add Display” (2) In the 

Display configuration dialog, type Space Display for 

name. Leave 2D as the type because we are using 2D 

space. (3)Select space projection in the “Projection and 

Value Layers” section and then click the green arrow. 

The projections on the right are the ones will be 

displaying and those on the left are all the possible 

projections to display. (4)Click next. (5)Select UAV, 

Obstacle, and Target agents. Move them to right by 

clicking arrow. Click Next. (6) In this panel, we can 

configure what we want the UAV, Obstacle, and Target 

look like. (7) Click each agent, and open 2D shape 

Editor to change colors and shapes. After setting all 

three of agents, Click next (8) Click Next. Click Finish

These will create Space display under Display node 

in the Scenario Tree. Save this by clicking save button 

on the toolbar. Finally, we can now run our model.
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Fig. 4. parameters

Figure 4 is depicted final Scenario Tree.

There are five parameters in this project shown in 

Figure 4. numGeneration parameter is able to set up 

maximum number of generation for Genetic algorithm. 

The default value is 30. It is very important parameter 

because it directly affects to UAV path creation. 

numObstacle parameter literally creates zero or more 

squared obstacles as user specified in the space. The 

default value is 7. numTarget parameter creates one or 

more targets that UAVs have to arrive during their 

mission. The default is 4. Lastly, numUAV parameter 

sets the number of UAV in the simulator. The default 

value is 1.  

When the program executes, it launches Repast 

simulator as shown in Figure 5.The User panel on the 

left (Scenario Tree, Figure 4) reveals the runtime 

configuration of the model. It must be done before 

running the simulation

As shown in Figure 5, we can monitor the simulation 

in the middle of simulator display. We can run the 

simulation by clicking the Run button at which upper 

side of problem, step through each timestep with the 

Step button, stop the simulation with the Stop button, 

and reset it for another run with the Reset Button. I 

will not cover rest of the buttons because they are not 

relevant in this project.

Fig. 5. Demo Screenshot of Simulation

5. Solution Validation and verification

5.1 Verification

To ensure that the program has been built according 

to the requirements and design specification, we 

verified the project using three testing method; Module, 

Integration, and System test. The module test shown in 

Tables 3 verifies individual methods. Each function has 

a pre-condition and post-condition. Pre-condition is 

used for evaluating the parameters before the function 

is invoked. Post-condition is used after the function 

executes. Integration testing is required after all methods 

tested in the module testing phase. Integration testing 

combines and tests individual modules as a group. 

Integration testing verifies functional, performance, and 

reliability requirements placed on the critical feature 

items of this project. we assumed path creation using 

the genetic algorithm and correctness of the GA as 

critical items for the project.

5.1.1 Module test

Functions in the table below are selected as part of 

module testing because they are repeatable, consistent, 

and fast. Repeatable means we can rerun the same test 

as many times as we needed. Consistent means every 

time we run with same parameter, we get the same result. 

That is why we used BlackBox testing for this testing. 

By only examining pre-condition and post-condition, we 

can be assured that a function is working with respect 

to its functional specification.
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5.1.2 Integration Test

(1) Path Creation using a Genetic Algorithm

To illustrate integration testing, we choose path 

creation mechanism that involves integration of the 

simulator with the genetic algorithm functionality. To 

generate a path, multiple methods are combined and 

orchestrated, and it can be done via System Sequence 

Diagram. In addition, the Genetic Algorithm requires 

computational time to calculate fitness values and to 

evolve candidate paths.

To check whether the system actually generates the 

best possible path as an output, we configured the 

system to display the path information during every 

each generation. Figure 6 shows the output trace. Detail 

explanation of Figure 6 is following: Number indicates 

the number of evolution in Genetic Algorithm. Size total 

length of chromosome. Fitness Value the value that 

determines best chromosome. Alleles List of waypoints.

By checking the output information above as well as 

monitoring the visualization, the system was tested with 

respect to its functional, performance and reliability 

aspects.

Fig. 6. Best candidate chromosome information 
on console output 

(2) Correctness of Genetic algorithm

In this task we checked the correctness of our 

implementation of the Genetic Algorithm. Even though 

paths are generated within the system as discussed 

before, we cannot be sure whether the algorithm is 

actually producing an optimal path. To verify correctness 

of the algorithm, we used the time step which translates 

into a time tick in the simulator. There are two reasons 

for using the time tick:

• Based on the theory of the Genetic Algorithms, 

the more the number of generations in a Genetic 

Name of function pre condition post condition

getDirection receive target location and knows current location returns direction to target in degrees

list of gridcells where obstacles possibly exist returns the number of detected obstaclesradar

almostEqual receives two gridpoints
returns true if two points are almost equal, 
false otherwise

list of multiple waypoints moves UAV next waypointForward

createPath UAV detects obstacle generate new path

UAV detects other UAV generate new pathcreatePathUAV

GAsetup UAV calls createPath method Initialize GA model

GAconfiguration GA algorithm initialized settings for genetic algorithm

pathToGene GA model instantiated
Perform genetic algorithm and return 
waypoints

generatePath function receives best possible chromosome Transform chromosome to waypoints

IsInterSect
Two waypoints are given and one gridpoint to 
check collision

Returns true if gridpoints lies on line between 
two waypoints, false otherwise

nearFromObstacle Receives a candidate chromosome returns fitness value of the chromosome

findshortest receives a candidate chromosome returns fitness value of the chromosome

Distancebetweenpoint Two points are given returns distance between two points in double

getPositionGene
Function receives a chromosome and 
index number to get

returns a gene of specified index in 
chromosome

Table 3. UAV & Genetic algorithm & Fitness Function conditions
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Algorithm, the higher the possibility of generating 

an optimal path 

• The UAVs make at least one move for the target 

in every time step.

For UAV, optimal path in free space would be a 

straight line to the target. If the distance between UAV 

and target is 10 in grid space, UAV will need 10 tick 

of time to reach the target point because UAV makes 

a move in every time step. However, when the UAV 

encounters an obstacle and invokes the genetic algorithm, 

a path comprised of multiple waypoints is created. As 

we described before, the larger the number of evolutionary 

generations in genetic algorithm, the higher the fitness 

of the generated path. An optimal path is one that is 

close target, able to avoid obstacle, and short. Therefore, 

the less time ticks are expected with large number of 

evolutionary generations. Based on these reasons, the 

testing checks the time tick to verify “how long does 

UAV take to get to all the targets”. Following Figure 

7 and Table 4 show the observed results.

The above results are showing that as the number of 

generations increases, UAV’s path get close to near 

optimal. Therefore, we can verify that our genetic 

algorithm is functioning correctly.

Fig. 7. Fitness value of the generated path

The Number of Evolutionary Generations Tick Count

10 720

20 559

30 513

50 449

Table 4. Observed generation result per Time Tick 

5.2 Validation
We compared specified requirements, which are 

proposed during initial phase, with finished product in 

order to ensure that the product actually meets the 

user’s requirements. 

• The program should be able to show visual 

display to user.

• The simulation must be able to test path planning 

mechanism of UAV in the simulator

• Each UAV must avoid collision with obstacles 

and other UAVs

• UAV must reach the assigned targets in the 

correct order

5.2.1 validation Testing

In order to validate the overall operation of the 

simulation, we tested with 3 UAVs, 7 squared obstacles, 

and 4 targets as shown in Figure 8. we only concentrate 

on the path of one UAV (blue colored, pointed by black 

arrow in Figure 8). The order of targets for this UAV 

is also numbered in Figure 8. In addition, Path to target 

#1 is expected similar to Red and Blue paths in Figure 8.

Fig. 8. Simulation Results
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Figure 8 shows that UAV is detecting the first 

obstacle (on the Left) and avoiding from it (on the 

Right). This also demonstrates that Path is almost near 

optimal as we expected in Figure 8. Circumstance that 

is depicted in Figure 8 demonstrates UAV collision 

avoidance. Two UAVs are aware of another UAV’s 

movement. So, they immediately calculate new path. 

The new path is avoiding from collision as well as 

towards to next target. Lastly, UAV visited all targets 

and arrived last target location shown in Figure 8.

6. Conclusion

In this paper, a new simulation method based on 

Genetic Algorithms is presented to realize dynamic 

UAV path planning in an environment with obstacle 

and multiple target points. The path planning model is 

based on a two-dimensional grid map. Adaptive 

evolutionary planning is adopted based on a set of 

criteria to generate path to avoid obstacles as well as 

other UAVs. The simulation model is implemented 

using the Repast platform to visualize and test the 

simulated scenario. The modeling and simulation study 

of dynamic path planning is conducted in accordance 

with the software engineering life cycle. 

As simulation results indicate, evolutionary path 

planning using genetic algorithms has potential to 

improve adaptivity of autonomous vehicle. Even though 

the algorithm does not return the best path, it demonstrates 

that collisions can be avoided from obstacles as well as 

moving obstacles using the near optimal path. This path 

planning mechanism demonstrates that it can be used in 

volatile environments as depicted by the scenarios used 

in this project. 

Since the evolutionary dynamic path planning enables 

us the ability of collision avoidance while generating 

near optimal paths in real time, future research is 

warranted. The scenarios can be simulated under more 

realistic environment with accurate turning angles, speed, 

and altitude of vehicle. This presents additional challenges 

in design and implementation because of its computational 

complexity, but it would give more accurate results 

than the current simulation does. Once the algorithm is 

verified with acceptable results, the final step would be 

testing with real AVs in real world with appropriate 

missions. 
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