• Title/Summary/Keyword: adaptive feedforward control

Search Result 119, Processing Time 0.021 seconds

An FNN based Adaptive Speed Controller for Servo Motor System

  • Lee, Tae-Gyoo;Lee, Je-Hie;Huh, Uk-Youl
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.6
    • /
    • pp.82-89
    • /
    • 1997
  • In this paper, an adaptive speed controller with an FNN(Feedforward Neural Network) is proposed for servo motor drives. Generally, the motor system has nonlinearities in friction, load disturbance and magnetic saturation. It is necessary to treat the nonlinearities for improving performance in servo control. The FNN can be applied to control and identify a nonlinear dynamical system by learning capability. In this study, at first, a robust speed controller is developed by Lyapunov stability theory. However, the control input has discontinuity which generates an inherent chattering. To solve the problem and to improve the performances, the FNN is introduced to convert the discontinuous input to continuous one in error boundary. The FNN is applied to identify the inverse dynamics of the motor and to control the motor using coordination of feedforward control combined with inverse motor dynamics identification. The proposed controller is developed for an SR motor which has highly nonlinear characteristics and it is compared with an MRAC(Model Reference Adaptive Controller). Experiments on an SR motor illustrate te validity of the proposed controller.

  • PDF

Validation of model-based adaptive control method for real-time hybrid simulation

  • Xizhan Ning;Wei Huang;Guoshan Xu;Zhen Wang;Lichang Zheng
    • Smart Structures and Systems
    • /
    • v.31 no.3
    • /
    • pp.259-273
    • /
    • 2023
  • Real-time hybrid simulation (RTHS) is an effective experimental technique for structural dynamic assessment. However, time delay causes displacement de-synchronization at the interface between the numerical and physical substructures, negatively affecting the accuracy and stability of RTHS. To this end, the authors have proposed a model-based adaptive control strategy with a Kalman filter (MAC-KF). In the proposed method, the time delay is mainly mitigated by a parameterized feedforward controller, which is designed using the discrete inverse model of the control plant and adjusted using the KF based on the displacement command and measurement. A feedback controller is employed to improve the robustness of the controller. The objective of this study is to further validate the power of dealing with a nonlinear control plant and to investigate the potential challenges of the proposed method through actual experiments. In particular, the effect of the order of the feedforward controller on tracking performance was numerically investigated using a nonlinear control plant; a series of actual RTHS of a frame structure equipped with a magnetorheological damper was performed using the proposed method. The findings reveal significant improvement in tracking accuracy, demonstrating that the proposed method effectively suppresses the time delay in RTHS. In addition, the parameters of the control plant are timely updated, indicating that it is feasible to estimate the control plant parameter by KF. The order of the feedforward controller has a limited effect on the control performance of the MAC-KF method, and the feedback controller is beneficial to promote the accuracy of RTHS.

Design of robust stable hybrid controllers for active noise/vibration control (능동 소음 및 진동 제어에 사용되는 강인안정한 하이브리드 제어기의 설계)

  • Oh, Shi-Hwan;Park, Young-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.431-436
    • /
    • 2000
  • Adaptive feed forward control algorithms based largely upon LMS approach have developed in recent two decades, and they have been widely applied to practical sound and vibration control problems in the case of the reference signal is available. Feedforward control can be applied only when reference signals can be measured or regenerated, while feedback controllers are used to reduce; sound and vibration when reference signals are not available. In recent years, hybrid control schemes in which adaptive feed forward controllers are combined with feedback ones have been studied based on simulations and experiments. The results have shown that the hybrid control may have better control performances in convergence speed and steady state error than the single control schemes. Hybrid control has the advantages of improving stability and performance as well as the disturbance rejection property. However, little effort has been made to the analysis or interpretation of hybrid control systems. In this study, we discussed the feedback controller effects on the stability of feed forward control algorithm in the presence of uncertain error path and a simple example showed that a stable feedback controller could make the feedforward controller unstable. A design criterion of feedback controllers is proposed in order to guarantee the stability of feedforward algorithms in the presence of error paths with uncertainties.

  • PDF

Hybrid Adaptive Feedforward Control System Against State and Input Disturbances (시스템 상태 및 입력 외란을 고려한 하이브리드 방식의 적응형 피드포워드 제어시스템)

  • Kim, Jun-Su;Cho, Hyun-Cheol;Kim, Gwan-Hyung;Ha, Hong-Gon;Lee, Hyung-Ki
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.3
    • /
    • pp.237-242
    • /
    • 2012
  • AFC (Adaptive Feedforward Control) is significantly employed for improving control performance of dynamic systems particularly involving periodic disturbance signals in engineering fields. This paper presents a novel hybrid AFC approach for discrete-time systems with multiple disturbances in terms of control input and state variables. The proposed AFC mechanism is hierarchically composed of a conventional feedforward control framework and PID auxiliary control configuration in parallel. The former is generic to decrease periodic disturbance excited to control actuators and the latter is additionally constructed to overcome control deterioration due to time-varying uncertainty under given systems. We carry out numerical simulation to test reliability of our proposed hybrid AFC system and compare its control performance to a well-known conventional AFC method with respect to time and frequency domains for proving of its superiority.

Real time Adaptive control of the Manipulator (매니퓰레이터의 실시간 적응제어)

  • Chung, C.S.;Lee, S.C.;Na, C.D.;Koo, C.K.
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.771-776
    • /
    • 1991
  • In this paper. an indirect adaptive controller for manipulator which is composed of two controller structure is considered. One is feedforward controller in which the dynamics equation solved and the other is feedback controller in which the output error compensated. This controller has a good performance, but the computation burden of the feed forward controller keep from real time control. At this point, we proposed the two time adaptive controller where the sampling time of the feedforward controller is quite longer than that of the feedback controller. By the computer simulation, this proposed two time adaptive controller shows good performance in the view of accuracy in spite of decreasing computational burden.

  • PDF

Nonlinear Adaptive Controller for Robot Manipulator (로봇의 비선형 적응제어기 개발에 관한 연구)

  • 박태욱
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.419-423
    • /
    • 1996
  • These days, industrial robots are required to have high speed and high precision in doing various tasks. Recently, the adaptive control algorithms for those nonlinear robots have been developed. With spatial vector space, these adaptive algorithms including recursive implementation are simply described. Without sensing joint acceleration and computing the inversion of inertia matrix, these algorithms which include P.D. terms and feedforward terms have global tracking convergence. In this paper, the feasibility of the proposed control method is illustrated by applying to 2 DOF SCARA robot in DSP(Digital Signal Processing).

  • PDF

Volume Velocity Control of Active Panel to Reduce Interior Noise (실내소음 저감을 위한 능동패널의 체속도 제어)

  • 김인수
    • Journal of KSNVE
    • /
    • v.9 no.1
    • /
    • pp.33-41
    • /
    • 1999
  • This paper presents a method of actively controlling the interior noise by a trim panel with hybrid feedforward-feedback control loop. The control technique is designed to minimize the vibration of panel whose motion is limited to that of a piston (out-of-plane motion). The hybrid controller consists of an adaptive feedforward controller in conjunction with a linear quadratic Gaussian (LQG) feedback controller. In order to maintain control performance of both persistent and transient disturbances, the feedback loop speeds up the adaptation rate of feedforward controller by improving damping capacity of secondary plant related with the adaptation rule. Numerical simulation and experimental result indicate that the hybrid controller is a more effective method for reducing the vibration of the panel (and therefore the interior noise) compared to using feedforward controller.

  • PDF

Discrete-Time Adaptive Repetitive Control and Its Application to Linear Motors (적응 이산시간 반복제어 및 리니어모터에의 응용)

  • Ahn, Hyun-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.79-82
    • /
    • 2002
  • In this paper, we propose an adaptive repetitive control algorithm for the system the task of which is repetitive. The feedforward controller in the repetitive control system is modified by using the system parameter identifier in order to improve the convergence characteristics. The proposed algorithm is applied to the tracking control of a linear BLDC motor to which a periodic reference input is applied. It is illustrated by simulation results that the proposed adaptive repetitive control method yields better control performance than existing repetitive control even when modeling errors exist.

  • PDF

A model-based adaptive control method for real-time hybrid simulation

  • Xizhan Ning;Wei Huang;Guoshan Xu;Zhen Wang;Lichang Zheng
    • Smart Structures and Systems
    • /
    • v.31 no.5
    • /
    • pp.437-454
    • /
    • 2023
  • Real-time hybrid simulation (RTHS), which has the advantages of a substructure pseudo-dynamic test, is widely used to investigate the rate-dependent mechanical response of structures under earthquake excitation. However, time delay in RTHS can cause inaccurate results and experimental instabilities. Thus, this study proposes a model-based adaptive control strategy using a Kalman filter (KF) to minimize the time delay and improve RTHS stability and accuracy. In this method, the adaptive control strategy consists of three parts-a feedforward controller based on the discrete inverse model of a servohydraulic actuator and physical specimen, a parameter estimator using the KF, and a feedback controller. The KF with the feedforward controller can significantly reduce the variable time delay due to its fast convergence and high sensitivity to the error between the desired displacement and the measured one. The feedback control can remedy the residual time delay and minimize the method's dependence on the inverse model, thereby improving the robustness of the proposed control method. The tracking performance and parametric studies are conducted using the benchmark problem in RTHS. The results reveal that better tracking performance can be obtained, and the KF's initial settings have limited influence on the proposed strategy. Virtual RTHSs are conducted with linear and nonlinear physical substructures, respectively, and the results indicate brilliant tracking performance and superb robustness of the proposed method.

Design of a Real Time Adaptive Controller for SCARA Robot Using Digitl Signal Process (디지탈 신호처리기를 사용한 스카라 로보트의 실시간 적응제어기 설계)

  • 김용태;서운학;한성현;이만형;김성권
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.472-477
    • /
    • 1996
  • This paper presents a new approachtothe design of adaptive control system using DSPs(TMS320C30) for robotic manipulators to achieve trajectory tracking by the joint angles. Digital signal processors are used in implementing real time adaptive control algorithms to provide an enhanced motion control for robotic manipulators. In the proposed control scheme, adaptation laws are derived from the improved Lyapunov second stability analysis method based on the adaptive model reference control theory. The adaptive controller consists of an adaaptive feedforward controller, feedback controller, and PID type time-varying auxillary control elements. The prpposed adaptive control scheme is simple in structure, fast in computation, and suitable for implementation of real-time control. Moreover, this scheme does not require an accurate dynamic modeling, nor values of manipulator parameters and payload. Performance of the adaptive controller is illustrated by simulation and experimental results for a SCARA robot.

  • PDF