• Title/Summary/Keyword: adaptive evolutionary algorithm

Search Result 81, Processing Time 0.022 seconds

Structure optimization of neural network using co-evolution (공진화를 이용한 신경회로망의 구조 최적화)

  • 전효병;김대준;심귀보
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.4
    • /
    • pp.67-75
    • /
    • 1998
  • In general, Evoluationary Algorithm(EAs) are refered to as methods of population-based optimization. And EAs are considered as very efficient methods of optimal sytem design because they can provice much opportunity for obtaining the global optimal solution. This paper presents a co-evolution scheme of artifical neural networks, which has two different, still cooperatively working, populations, called as a host popuation and a parasite population, respectively. Using the conventional generatic algorithm the host population is evolved in the given environment, and the parastie population composed of schemata is evolved to find useful schema for the host population. the structure of artificial neural network is a diagonal recurrent neural netork which has self-feedback loops only in its hidden nodes. To find optimal neural networks we should take into account the structure of the neural network as well as the adaptive parameters, weight of neurons. So we use the genetic algorithm that searches the structure of the neural network by the co-evolution mechanism, and for the weights learning we adopted the evolutionary stategies. As a results of co-evolution we will find the optimal structure of the neural network in a short time with a small population. The validity and effectiveness of the proposed method are inspected by applying it to the stabilization and position control of the invered-pendulum system. And we will show that the result of co-evolution is better than that of the conventioal genetic algorithm.

  • PDF

Analysis of the applicability of parameter estimation methods for a transient storage model (저장대모형의 매개변수 산정을 위한 최적화 기법의 적합성 분석)

  • Noh, Hyoseob;Baek, Donghae;Seo, Il Won
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.10
    • /
    • pp.681-695
    • /
    • 2019
  • A Transient Storage Model (TSM) is one of the most widely used model accounting for complex solute transport in natural river to understanding natural river properties with four TSM key parameters. The TSM parameters are estimated via inverse modeling. Parameter estimation of the TSM is carried out by solving optimization problem about finding best fitted simulation curve with measured curve obtained from tracer test. Several studies have reported uncertainty in parameter estimation from non-convexity of the problem. In this study, we assessed best combination of optimization method and objective function for TSM parameter estimation using Cheong-mi Creek tracer test data. In order to find best optimization setting guaranteeing convergence and speed, Evolutionary Algorithm (EA) based global optimization methods, such as CCE of SCE-UA and MCCE of SP-UCI, and error based objective functions were compared, using Shuffled Complex-Self Adaptive Hybrid EvoLution (SC-SAHEL). Overall results showed that multi-EA SC-SAHEL with Percent Mean Squared Error (PMSE) objective function is the best optimization setting which is fastest and stable method in convergence.

Physics-based Surrogate Optimization of Francis Turbine Runner Blades, Using Mesh Adaptive Direct Search and Evolutionary Algorithms

  • Bahrami, Salman;Tribes, Christophe;von Fellenberg, Sven;Vu, Thi C.;Guibault, Francois
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.3
    • /
    • pp.209-219
    • /
    • 2015
  • A robust multi-fidelity optimization methodology has been developed, focusing on efficiently handling industrial runner design of hydraulic Francis turbines. The computational task is split between low- and high-fidelity phases in order to properly balance the CFD cost and required accuracy in different design stages. In the low-fidelity phase, a physics-based surrogate optimization loop manages a large number of iterative optimization evaluations. Two derivative-free optimization methods use an inviscid flow solver as a physics-based surrogate to obtain the main characteristics of a good design in a relatively fast iterative process. The case study of a runner design for a low-head Francis turbine indicates advantages of integrating two derivative-free optimization algorithms with different local- and global search capabilities.

An Adaptive Evolutionary Algorithm Applied to the Fixed Charge Transportation Problem (고정비용 수송문제에 적용된 적응형 진화 알고리즘)

  • Soak, Sang-Moon;Lee, Hong-Girl
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.121-124
    • /
    • 2006
  • 본 논문에서는 고정비용수송문제와 같은 다양한 네트워크 최적화 문제들에 적용될 수 있는 새로운 진화 알고리즘을 소개한다. 제안하는 알고리즘은 기존의 진화 알고리즘과 비교에서 두가지 다른 특징을 지닌다. 첫째, 해 표현법이 다르다. 초기에, 모든 유전인자 값이 '0'으로 설정된다. 둘째, 각 해들은 일치하는 적합도 값에 따라 일종의 라마크식(Lamarckian) 적응 과정을 수행한다. 제안하는 적응적 진화 알고리즘의 성능을 측정하기 위해 고정비용수송문제에 적용하였으며 또한 동시에 제안하는 알고리즘을 최적화하기 위해 다양한 실험을 수행하였다. 결론적으로, 제안하는 알고리즘은 기존에 고정비용수송문제를 위해 제안된 가장 우수한 알고리즘보다 더 우수한 성능을 보여주었다.

  • PDF

Design of SVC Fuzzy Logic Controller for Improving Power System Stability (전력계통 안정도 향상을 위한 SVC용 퍼지제어기의 설계)

  • Jung, G.Y.;Hwang, G.H.;Son, J.H.;Kim, H.S.;Mun, K.J.;Park, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.221-223
    • /
    • 2000
  • This paper describes the design of SVC fuzzy logic controller (SVC-FLC) using adaptive evolutionary algorithm and we tuned the gain of input-output variables of SYC-FLC using it. We performed the nonlinear simulation on an single-machine infinite system to prove the efficiency of the proposed method. The proposed SYC-FLC showed the better performance than PD controller in terms of the settling time and damping effect, for system operation condition used in evaluating the robustness and three phase grounding default in cases of nominal loading used in tuning SVC-FLC for a single-machine infinite system.

  • PDF

Smooth Formation Navigation of Multiple Mobile Robots for Avoiding Moving Obstacles

  • Chen Xin;Li Yangmin
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.4
    • /
    • pp.466-479
    • /
    • 2006
  • This paper addresses a formation navigation issue for a group of mobile robots passing through an environment with either static or moving obstacles meanwhile keeping a fixed formation shape. Based on Lyapunov function and graph theory, a NN formation control is proposed, which guarantees to maintain a formation if the formation pattern is $C^k,\;k\geq1$. In the process of navigation, the leader can generate a proper trajectory to lead formation and avoid moving obstacles according to the obtained information. An evolutionary computational technique using particle swarm optimization (PSO) is proposed for motion planning so that the formation is kept as $C^1$ function. The simulation results demonstrate that this algorithm is effective and the experimental studies validate the formation ability of the multiple mobile robots system.

Improving Efficiency of GP by Adaptive Node Selection for Bipedal Locomotion with Evolutionary Algorithm (2족 보행운동 생성을 위한 적응적 노드 선택에 의한 유전적 프로그래밍의 성능 향상)

  • 옥수열
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.10a
    • /
    • pp.165-168
    • /
    • 2004
  • 본 연구에서는 근골격계로 구성된 신체 역학계와 신경 진동자로 구성된 신경계의 상호작용에 의해서 자율적인 2족 보행운동 생성하려고 하고 있다. 이를 위해서는 역학계와 신경계의 않은 파라메트(Parameter)의 조절이 필요하다 본 연구에서는 유전적 프로그래밍(GP)을 이용하여 파라메트의 자동조절 수법을 제안하였다. GP는 문제를 해결하기 위한 계산 프로그래밍을 탐색하는 진화형 탐색 알고리즘으로, GP를 이용해서 문제해결을 행하기 위해서는 노드의 선택이 매우 중요하다. 그러나 대상문제에 대한 충분한 정보가 없는 경우에는 노드를 용장성 있게 설계하게 되어, 이로 인한 탐색공간의 확장으로 GP에 대한 탐색성능의 저하를 초래한다. 본 논문에서는 이러한 문제를 해결하기 위해서 용장성 노드 집합으로부터 유용한 노드를 획득하기 위해 제안한 수법을 2족 보행운동 생성 시스템에 적용하기 전에 사전 평가로서 기호회귀(Symbolic Regression)문제에 적용하여 실험을 통해 제안 수법의 타당성과 탐색성능 향상의 효과에 관해서 논하고자 한다.

  • PDF

Generating Adaptive Fuzzy Classification Rules using An Efficient Evolutionary Algorithm (효율적인 진화알고리즘을 이용한 적응형 퍼지 분류 규칙 생성)

  • Ryu, Joung-Woo;Kim, Sung-Eun;Kim, Myung-Won
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11b
    • /
    • pp.769-771
    • /
    • 2005
  • 데이터 특성이 연속적이고 애매할 때 퍼지규칙으로 분류 규칙을 표현하는 것은 매우 유용하고 효과적이다. 그러나 일반적으로 정확하지 않은 데이터 특성에 대해서 소속함수를 결정한다는 것은 어려운 일이다. 본 논문에서는 진화알고리즘을 이용하여 효과적인 퍼지 분류 규칙을 자동으로 생성하는 방법을 제안한다. 제안한 방법에서 규칙의 정확성과 이해성을 고려하여 최적화된 소속함수를 생성하기 위해 진화알고리즘을 사용한다. 먼저 지도 군집화로 진화를 위한 초기 소속함수를 생성한다. 진화알고리즘은 전역적 최적 해를 찾는데 효과적이다. 그러나 시간에 대한 효율성이 낮다. 특히 모델 최적화 문제에서는 개체 평가 단계에서 많은 시간이 소요된다. 따라서 본 논문에서는 전체 데이터를 여러 개의 부분 데이터들로 나누고 개체들은 전체 데이터 대신 매번 부분 데이터를 임의적으로 선택하여 개체를 평가함으로써 수행 시간을 단축시킬 수 있는 진화 방법을 제안한다. 제안한 퍼지 분류 규칙 생성 방법의 타당성을 검증하기 위한 실험 데이터로 UCI에서 제공하는 데이터들을 사용하였으며, 실험 결과는 기존 방법에 비해 평균적으로 더 효과적임을 확인하였다.

  • PDF

TCSC Nonlinear Adaptive Damping Controller Design Based on RBF Neural Network to Enhance Power System Stability

  • Yao, Wei;Fang, Jiakun;Zhao, Ping;Liu, Shilin;Wen, Jinyu;Wang, Shaorong
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.252-261
    • /
    • 2013
  • In this paper, a nonlinear adaptive damping controller based on radial basis function neural network (RBFNN), which can infinitely approximate to nonlinear system, is proposed for thyristor controlled series capacitor (TCSC). The proposed TCSC adaptive damping controller can not only have the characteristics of the conventional PID, but adjust the parameters of PID controller online using identified Jacobian information from RBFNN. Hence, it has strong adaptability to the variation of the system operating condition. The effectiveness of the proposed controller is tested on a two-machine five-bus power system and a four-machine two-area power system under different operating conditions in comparison with the lead-lag damping controller tuned by evolutionary algorithm (EA). Simulation results show that the proposed damping controller achieves good robust performance for damping the low frequency oscillations under different operating conditions and is superior to the lead-lag damping controller tuned by EA.

Implementation on the evolutionary machine learning approaches for streamflow forecasting: case study in the Seybous River, Algeria (유출예측을 위한 진화적 기계학습 접근법의 구현: 알제리 세이보스 하천의 사례연구)

  • Zakhrouf, Mousaab;Bouchelkia, Hamid;Stamboul, Madani;Kim, Sungwon;Singh, Vijay P.
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.6
    • /
    • pp.395-408
    • /
    • 2020
  • This paper aims to develop and apply three different machine learning approaches (i.e., artificial neural networks (ANN), adaptive neuro-fuzzy inference systems (ANFIS), and wavelet-based neural networks (WNN)) combined with an evolutionary optimization algorithm and the k-fold cross validation for multi-step (days) streamflow forecasting at the catchment located in Algeria, North Africa. The ANN and ANFIS models yielded similar performances, based on four different statistical indices (i.e., root mean squared error (RMSE), Nash-Sutcliffe efficiency (NSE), correlation coefficient (R), and peak flow criteria (PFC)) for training and testing phases. The values of RMSE and PFC for the WNN model (e.g., RMSE = 8.590 ㎥/sec, PFC = 0.252 for (t+1) day, testing phase) were lower than those of ANN (e.g., RMSE = 19.120 ㎥/sec, PFC = 0.446 for (t+1) day, testing phase) and ANFIS (e.g., RMSE = 18.520 ㎥/sec, PFC = 0.444 for (t+1) day, testing phase) models, while the values of NSE and R for WNN model were higher than those of ANNs and ANFIS models. Therefore, the new approach can be a robust tool for multi-step (days) streamflow forecasting in the Seybous River, Algeria.