• Title/Summary/Keyword: adaptive design

Search Result 2,254, Processing Time 0.027 seconds

Design of an adaptive tracking algorithm for a phased array radar (위상배열 레이다를 위한 적응 추적 알고리즘의 설계)

  • Son, Keon;Hong, Sun-Mog
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.541-547
    • /
    • 1992
  • The phased array antenna has the ability to perform adaptive sampling by directing the radar beam without inertia in any direction. The adaptive sampling capability of the phased array antenna allows each sampling time interval to be varied for each target, depending on the acceleration of each target at any time. In this paper we design a three-dimensional adaptive tracking algorithm for the phased array radar system with a given set of measurement parameters. The tracking algorithm avoids taking unnecessarily frequent samples, while keeping the angular prediction error within a fraction of antenna beamwidth so that the probability of detection will not be degraded during a track update illuminations. In our algorithm, the target model and the sampling rate are selected depending on the target range and the target maneuver status which is determined by a maneuver detector. A detailed simulation is conducted to test the validity of our tracking algorithm for encounter geometries under various conditions of maneuver.

  • PDF

Adaptive Control of Robot Manipulators Using Lyapunov Design (Lyapunov 설계에 입각한 로보트 매니퓰레이터의 적응제어)

  • Lyou, Joon;Nam, Sang-Woo;Kim, Byung-Yeun;Park, Eun-Young
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.6
    • /
    • pp.936-941
    • /
    • 1987
  • This paper prexents an adaptive control scheme which adjusts any deviations of the manipulator from a desired trajectory. The scheme combines a new adaptive control and the conventional nominal control which drives the manipulator to the neighborhood of the trajectory. The proposed adaptive control is developed based on the lineatized perturbation equations in the vicinity of the trajectory and the Lyapunov design method, which makes the perturbations exponentially decay and has less computational requirements than the existing ones.

  • PDF

A Study on Robust Controller Design of Multi-Joint Robot Manipulator Using Adaptive Control (적응제어기법에 의한 다관절 로보트 매니퓰레이터의 견실한 제어기 설계에 관한 연구)

  • Han, Sung-Hyun;Lee, Man-Hyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.6 no.4
    • /
    • pp.108-118
    • /
    • 1989
  • An adaptive control scheme has been recognized as an effective approach for a robot manipulator to track a desired trajectory in spite of the presence of nonliearity and parameter uncertainty in robot dynamics model. In this paper, an adaptive control scheme for a robot manipulator is proposed to design robust controller using model reference adaptive control technique and hyperstability theory but it does away with] assumption that the process is characterized by a linear model remaining time invariant during the adaptation process. The performance of controller is demonstrated by the simulation about position and speed control of a six-link manipulator with disturbance and payload variation.

  • PDF

Decentralized Robust Adaptive Controller Design (강인한 분할형 적응 제어기 설계)

  • 홍선학;임화영
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.9
    • /
    • pp.1368-1375
    • /
    • 1993
  • This paper deals with the decentralized robust adaptive controller design for large-scale interconnected systems. We consider an arbitrary interconnection of subsystems with unkown parameters and bounded disturbances. When the disturbance and uncertain interconnections are present, the stability of the controlled large scale system is ensured if there exists a positive definite M-matrix which is related to the bound of the interconnections. The possible bound of the interconnections is assumed to be known Pth order polynomials for the decentralized adaptive controller. A modified adaptive law is proposed guaranteeing the existence of a region of attraction from which all signals converge to a residual set Do, which contains the equilibrium.

  • PDF

A Design of Fuzzy Controllers of HVDC System Using Adaptive Evolutionary Algorithm (적응진화알고리즘을 이용한 HVDC 계통의 퍼지제어기 설계)

  • Choi, Jae-Kon;Hwang, Gi-Hyun;Park, Je-Young; Park, June-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.160-162
    • /
    • 1999
  • This paper presents an optimal design method for fuzzy controllers of HVDC system using adaptive evolutionary algorithm(AEA). We have proposed an adaptive evolutionary algorithm which uses a genetic algorithm and an evolution strategy in an adaptive manner in order to take merits of two different evolutionary computations. AEA is used for tuning fuzzy membership functions, scaling constants and PD gains. The simulation results show that the disturbances are well damped by both controllers and the dynamic performances of fuzzy controllers have better responses than those of PD controllers when mechanical torque changes suddenly.

  • PDF

Design of Fuzzy Observer for Nonlinear System using Dynamic Rule Insertion (비선형 시스템에 대한 동적인 규칙 삽입을 이용한 퍼지 관측기 설계)

  • Seo, Ho-Joon;Park, Jang-Hyun;Seo, Sam-Jun;Kim, Dong-Sik;Park, Gwi-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2308-2310
    • /
    • 2001
  • In the adaptive fuzzy sliding mode control, from a set of a fuzzy IF-THEN rules adaptive fuzzy sliding mode control whose parameters are adjusted on-line according to some adaptation laws is constructed for the purpose of controlling the plant to track a desired trajectory. Most of the research works in nonlinear controller design using fuzzy systems consider the affine system with fixed grid-rule structure based on system state availability. The fixed grid-rule structure makes the order of the controller big unnecessarily, hence the on-line fuzzy rule structure and fuzzy observer based adaptive fuzzy sliding mode controller is proposed to solve system state availability problems. Therefore, adaptive laws of fuzzy parameters for state observer and fuzzy rule structure are established implying whole system stability in the sense of Lyapunov.

  • PDF

Robust High Gain Adaptive Output Feedback Control for Nonlinear Systems with Uncertain Nonlinearities in Control Input Term

  • Shim, Kyu-Hong;Lim, Myo-Taeg
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.34.4-34
    • /
    • 2001
  • It is well known that one can easily design a high-gain adaptive output feedback control for a class of nonlinear systems which satisfy a certain condition so called output feedback exponential passivity (OFEP). The designed high gain adaptive controller has simple structure and high robustness with regard to bounded disterbances and unknown order of the controlled system. However, from the viewpoint of practical application, it is important to consider a robust control scheme for controlled systems for which some of the assumptions of output feedback stabilization are not valid. In this paper, we deal with a design problem of the robust high-gain adaptive output feedback control for the OFEP nonlinear systems with uncertain nonlinearities and/or disturbances.

  • PDF

Study on the Design of a Novel Adaptive Gripper (적응형 그리퍼 설계 연구)

  • Kim, Gi Sung;Kim, Han Sung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.3
    • /
    • pp.325-335
    • /
    • 2019
  • In this paper, a novel adaptive gripper with underactuation is presented, which can change its configuration to parallel or power grip mode according to object shapes. Differently from the commercial adaptive gripper by RobotiQ, the proposed gripper includes an actual parallelogram inside a five-bar mechanism, which allows the free selection of actuator locations and can reduce actuation torques effectively. The forward and inverse kinematics for two grip modes and statics analysis have been analyzed. From the comparative design, the proposed gripper has about 20% smaller size, 3.7% larger stroke, and 30.5% smaller average actuation torque than the commercial one.

Cognitive Factors in Adaptive Information Access

  • Park, Minsoo
    • International Journal of Advanced Culture Technology
    • /
    • v.6 no.4
    • /
    • pp.309-316
    • /
    • 2018
  • The main purpose of this study is to understand how cognitive factors influence the way people interact with information/information systems, by conducting comprehensive and in-depth literature reviews and a theoretical synthesis of related research. Adaptive systems have been built around an individual user's characteristics, such as interests, preferences, knowledge and goals. Individual differences in the ability to use new information and communication technology have been an important issue in all fields. Performance differences in utilizing new information and communication technology are sufficiently predictable that we can begin to coordinate them. Therefore, it is necessary to understand cognitive mechanisms to explain differences between individuals as well as the levels of performance. The theoretical synthesis from this study can be applied to design intelligent (i.e., human friendly) systems in our everyday lives. Further research should explore optimization design for user, by integrating user's individual traits (such as emotion and intent) and system modules to improve the interactions of human-system in data-driven environments.

On the robust adaptive linearizing control for unknown and analytic relay nonlinearity

  • Lee, Jae-Kwan;Abe, Ken-ichi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.177-180
    • /
    • 1996
  • The purpose of this paper is to design a robust adaptive control algorithm for a class of systems having continuous relay nonlinearity. This continuous relay nonlinearity can be defined as an analytic nonlinear function having unknown parameters and bounded unmodeling part. By this mathematical modeling, the whole system can be considered as a nonlinear system having unknown parameters and bounded perturbation. The control algorithm of this paper, RALC, can be constructed by robust adaptive law, feedback linearization, and indirect robust adaptive control. By this RALC, we can obtain that the output of given system can follow that of a stable reference linear model made by designer and the boundedness of all signals in closed-loop system can be maintained. Therefore, we can confirm a robust adaptive control for a class of systems having continuous relay nonlinearity.

  • PDF