• 제목/요약/키워드: adaptive crack propagation

검색결과 18건 처리시간 0.018초

Polygonal finite element modeling of crack propagation via automatic adaptive mesh refinement

  • Shahrezaei, M.;Moslemi, H.
    • Structural Engineering and Mechanics
    • /
    • 제75권6호
    • /
    • pp.685-699
    • /
    • 2020
  • Polygonal finite element provides a great flexibility in mesh generation of crack propagation problems where the topology of the domain changes significantly. However, the control of the discretization error in such problems is a main concern. In this paper, a polygonal-FEM is presented in modeling of crack propagation problems via an automatic adaptive mesh refinement procedure. The adaptive mesh refinement is accomplished based on the Zienkiewicz-Zhu error estimator in conjunction with a weighted SPR technique. Adaptive mesh refinement is employed in some steps for reduction of the discretization error and not for tracking the crack. In the steps that no adaptive mesh refinement is required, local modifications are applied on the mesh to prevent poor polygonal element shapes. Finally, several numerical examples are analyzed to demonstrate the efficiency, accuracy and robustness of the proposed computational algorithm in crack propagation problems.

Element-free Galerkin 방법을 이용한 적응적 균열진전해석 (Adaptive Crack Propagation Analysis with the Element-free Galerkin Method)

  • 최창근;이계희;정흥진
    • 한국전산구조공학회논문집
    • /
    • 제13권4호
    • /
    • pp.485-500
    • /
    • 2000
  • 본 논문에서는 element-free Galerkin(EFG) 방법에 기반한 적응적 정적균열진전해석기법을 제시하였다. 균열진전 매단계마다 적응적해석을 수행함으로써 전체 해석의 일관성과 정밀성을 동시에 확보할 수 있었다. 균열진전과정에 있어서의 적응적해석은 산정된 오차지표에 따라 적분을 위한 격자구조에 따라 절점을 추가하고 소거하는 과정을 통해 구현되었다. 이 때 사용된 오차지표는 원 EFG해석결과 얻어진 응력과 절점응력을 다시 투영한 응력의 차에 의해 얻어졌다. 제안된 해석기법의 타당성과 효용성을 수치예제에 의해 검증하였다. 그 결과 제안된 해석기법이 균열진전해석시 효율적으로 적용될 수 있음을 보였다.

  • PDF

Element-free Galerkin 방법을 이용한 적응적 균열진전해석 (Adaptive Crack Propagation Analysis with the Element-free Galerkin Method)

  • 최창근;이계희;정흥진
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.84-91
    • /
    • 2001
  • In this study, the adaptive analysis procedure of crack propagation based on the element-free Galerkin(EFG) method is presented. The adaptivity analysis in quasi-static crack propagation is achieved by adding and/or removing the node along the background integration cell that are refined or recovered according to the estimated error. These errors are obtained basically by calculating the difference between the values of the projected stresses and original EFG stresses. To evaluate the performance of proposed adaptive procedure, the crack propagation behavior is investigated for several examples. The results of these examples show the efficiency and accuracy of proposed scheme in crack propagation analysis.

  • PDF

Remeshing techniques for r-adaptive and combined h/r-adaptive analysis with application to 2D/3D crack propagation

  • Askes, H.;Sluys, L.J.;de Jong, B.B.C.
    • Structural Engineering and Mechanics
    • /
    • 제12권5호
    • /
    • pp.475-490
    • /
    • 2001
  • Remeshing strategies are formulated for r-adaptive and h/r-adaptive analysis of crack propagation. The relocation of the nodes, which typifies r-adaptivity, is a very cheap method to optimise a given discretisation since the element connectivity remains unaltered. However, the applicability is limited. To further improve the finite element mesh, a combined h/r-adaptive method is proposed in which h-adaptivity is applied whenever r-adaptivity is not capable of further improving the discretisation. Two and three-dimensional examples are presented. It is shown that the r-adaptive approach can optimise a discretisation at minimal computational costs. Further, the combined h/r-adaptive approach improves the performance of a fully r-adaptive technique while the number of h-remeshings is reduced compared to a fully h-adaptive technique.

Finite element procedures for the numerical simulation of fatigue crack propagation under mixed mode loading

  • Alshoaibi, Abdulnaser M.
    • Structural Engineering and Mechanics
    • /
    • 제35권3호
    • /
    • pp.283-299
    • /
    • 2010
  • This paper addresses the numerical simulation of fatigue crack growth in arbitrary 2D geometries under constant amplitude loading by the using a new finite element software. The purpose of this software is on the determination of 2D crack paths and surfaces as well as on the evaluation of components Lifetimes as a part of the damage tolerant assessment. Throughout the simulation of fatigue crack propagation an automatic adaptive mesh is carried out in the vicinity of the crack front nodes and in the elements which represent the higher stresses distribution. The fatigue crack direction and the corresponding stress-intensity factors are estimated at each small crack increment by employing the displacement extrapolation technique under facilitation of singular crack tip elements. The propagation is modeled by successive linear extensions, which are determined by the stress intensity factors under linear elastic fracture mechanics (LEFM) assumption. The stress intensity factors range history must be recorded along the small crack increments. Upon completion of the stress intensity factors range history recording, fatigue crack propagation life of the examined specimen is predicted. A consistent transfer algorithm and a crack relaxation method are proposed and implemented for this purpose. Verification of the predicted fatigue life is validated with relevant experimental data and numerical results obtained by other researchers. The comparisons show that the program is capable of demonstrating the fatigue life prediction results as well as the fatigue crack path satisfactorily.

Adaptive finite elements by Delaunay triangulation for fracture analysis of cracks

  • Dechaumphai, Pramote;Phongthanapanich, Sutthisak;Bhandhubanyong, Paritud
    • Structural Engineering and Mechanics
    • /
    • 제15권5호
    • /
    • pp.563-578
    • /
    • 2003
  • Delaunay triangulation is combined with an adaptive finite element method for analysis of two-dimensional crack propagation problems. The content includes detailed descriptions of the proposed procedure which consists of the Delaunay triangulation algorithm and an adaptive remeshing technique. The adaptive remeshing technique generates small elements around the crack tips and large elements in the other regions. Three examples for predicting the stress intensity factors of a center cracked plate, a compact tension specimen, a single edge cracked plate under mixed-mode loading, and an example for simulating crack growth behavior in a single edge cracked plate with holes, are used to evaluate the effectiveness of the procedure. These examples demonstrate that the proposed procedure can improve solution accuracy as well as reduce total number of unknowns and computational time.

무요소법의 적응해석을 위한 반복격자해법 (Iterative Cell-wise Solution Method for the Adaptive Analysis of a Meshless Method)

  • 석병호;임장근
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.607-614
    • /
    • 2002
  • For the accurate analysis of crack problems, considerable nodal refinement near the crack tip to capture singular stress field with sufficient accuracy to provide a useful computation of stress intensity factor is required. So, in this paper, adaptive nodal refinement scheme is proposed where nodes in restricted cell regions centered at crack tip are arranged in array for enhanced spatial resolution and adaptivity. With only cell-wise adaptive refinement scheme around crack tip fields, singularity of crack tip is sufficiently described to expect a successive crack propagate direction. Through numerical tests, accuracy of the proposed adaptive scheme is investigated and compared with the finite element and experimental results. By this implementation, it is shown that high accuracy is achieved by using iterative cell-wise solution method fur analyzing crack propagation problems.

  • PDF

Delaunay 삼각화를 이용한 적응적 Element-free Galerkin 해석 (Adaptive Element-free Galerkin Procedures by Delaunay Triangulation)

  • 이계희;정흥진;최창근
    • 한국전산구조공학회논문집
    • /
    • 제14권4호
    • /
    • pp.525-535
    • /
    • 2001
  • 본 연구에서는 무요소법의 일종인 element-free Galerkin 방법(EFGM)을 이용한 새로운 적응적 해석법을 제안하였다. 이 방법의 핵심은 Delaunay 삼각화에 기초를 둔 적분 격자를 기초로 수치적분과 적응적인 절점의 추가 및 소거를 수행하는 것이다. 이러한 적응적 해석법은 적분격자의 분할이나 이를 위한 추가적인 정보에 대한 관리가 필요 없이 간편하게 적응적 해석을 수행할 수 있다. 또한 균열의 진전과 같은 다단계 적응적 해석에 있어서도 매 해석단계별로 평가된 오차에 기초를 둔 최적 해석모델이 Delaunay 삼각화에 의해 구성되도록 하였다. 이러한 특성은 요소의 구성으로부터 자유로운 무요소법의 장점을 최대한 활용하여 해석모델의 구축을 보다 원활하게 수행할 수 있다. 적응적 해석에 기초가 되는 해석 후 오차평가는 계산된 응력과 투영응력과의 차이를 오차로 추정하는 투영응력법을 이용하였다. 균열진전을 포함하는 2차원예제의 해석을 수행한 결과 제안된 해석법의 타당성과 적용성을 입증할 수 있었다.

  • PDF

Strategy for refinement of nodal densities and integration cells in EFG technique

  • Patel, Bhavana S.S.;Narayan, Babu K.S.;Venkataramana, Katta
    • Structural Engineering and Mechanics
    • /
    • 제59권5호
    • /
    • pp.901-920
    • /
    • 2016
  • MeshFree methods have become popular owing to the ease with which high stress gradients can be identified and node density distribution can be reformulated to accomplish faster convergence. This paper presents a strategy for nodal density refinement with strain energy as basis in Element-Free Galerkin MeshFree technique. Two popular flat plate problems are considered for the demonstration of the proposed strategies. Issue of integration errors introduced during nodal density refinement have been addressed by suggesting integration cell refinement. High stress effects around two symmetrical semi-circular notches under in-plane axial load have been addressed in the first problem. The second considers crack propagation under mode I and mode II fracture loading by the way of introducing high stress intensity through line crack. The computational efficacy of the adaptive refinement strategies proposed has been highlighted.

Crack Identification Using Neuro-Fuzzy-Evolutionary Technique

  • Shim, Mun-Bo;Suh, Myung-Won
    • Journal of Mechanical Science and Technology
    • /
    • 제16권4호
    • /
    • pp.454-467
    • /
    • 2002
  • It has been established that a crack has an important effect on the dynamic behavior of a structure. This effect depends mainly on the location and depth of the crack. Toidentifythelocation and depth of a crack in a structure, a method is presented in this paper which uses neuro-fuzzy-evolutionary technique, that is, Adaptive-Network-based Fuzzy Inference System (ANFIS) solved via hybrid learning algorithm (the back-propagation gradient descent and the least-squares method) and Continuous Evolutionary Algorithms (CEAs) solving sir ale objective optimization problems with a continuous function and continuous search space efficiently are unified. With this ANFIS and CEAs, it is possible to formulate the inverse problem. ANFIS is used to obtain the input(the location and depth of a crack) - output(the structural Eigenfrequencies) relation of the structural system. CEAs are used to identify the crack location and depth by minimizing the difference from the measured frequencies. We have tried this new idea on beam structures and the results are promising.