• Title/Summary/Keyword: adaptive classification

Search Result 360, Processing Time 0.035 seconds

Machine Cell Formation using A Classification Neural Network

  • Lee, Kyung-Mi;Lee, Keon-Myung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.1
    • /
    • pp.84-89
    • /
    • 2004
  • The machine cell formation problem is the problem to group machines into machine families and parts into part families so as to minimize bottleneck machines, exceptional parts, and inter-cell part movements in cellular manufacturing systems and flexible manufacturing systems. This paper proposes a new machine cell formation method based on the adaptive Hamming net which is a kind of neural network model. To show the applicability of the proposed method, it presents some experiment results and compares the method with other cell formation methods. From the experiments, we observed that the proposed method could produce good cells for the machine cell formation problem.

Signal Processing Techniques Based on Adaptive Radial Basis Function Networks for Chemical Sensor Arrays

  • Byun, Hyung-Gi
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.161-172
    • /
    • 2016
  • The use of a chemical sensor array can help discriminate between chemicals when comparing one sample with another. The ability to classify pattern characteristics from relatively small pieces of information has led to growing interest in methods of sensor recognition. A variety of pattern recognition algorithms, including the adaptive radial basis function network (RBFN), may be applicable to gas and/ or odor classification. In this paper, we provide a broad review of approaches for various types of gas and/or odor identification techniques based on RBFN and drift compensation techniques caused by sensor poisoning and aging.

The Fault Types-Classification Techniques in the distribution system using Adaptive Network Fuzzy Inference System (퍼지신경망을 이용한 배전계통의 고장유형 판별 기법)

  • Jung, Ho-Sung;Choi, Sang-Youl;Kim, Ho-Joon;Shin, Myong-Chul;Lee, Bock-Ku;Suh, Hee-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.131-133
    • /
    • 1999
  • This paper proposed the technique of the fault-types classification using Adaptive Network Fuzzy Inference System in the distribution system. Fault and fault-like data in the linear RL load, arc furnace load and converter load were extracted by EMTP. These were characterized into 5 input variables and fuzzified automatically by learning. This technique was tested using another fault data unused learning.

  • PDF

A Design of an Algorithm for Analysis of Activity Using 3-Axis Accelerometer (3축 가속도 센서를 이용한 동작분석 알고리즘 설계)

  • 이승형;임예택;이경중
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.5
    • /
    • pp.361-367
    • /
    • 2004
  • This paper describes design of an algorithm for analyzing human activity using body-fixed 3-axis accelerometer in the small of the back. In the first step, we distinguish static and dynamic activity period using AC signal analysis. Then five postures were classified by applying the threshold in DC signal corresponding to the static activity period. Also, after comparison of average power and taking negative peak signal in the dynamic activity period, the four dynamic activities were classified by adaptive threshold method. To evaluate the performance of the proposed algorithm, the measured signals obtained from six subjects were applied to the proposed algorithm and the results were compared with the simultaneously measured video data. As a result, the activity classification rate of 95.7% on average was obtained. Overall results show that the proposed classification algorithm has a possibility to be used to analyze the static and dynamic physical activity.

Efficient Screen Splitting Methods - A Case Study in Block-wise Motion Detection

  • Layek, Md. Abu;Chung, TaeChoong;Huh, Eui-Nam
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.10
    • /
    • pp.5074-5094
    • /
    • 2016
  • Screen splitting is one of the fundamental tasks in different methods including video and image compression, screen classification, screen content coding and the like. These methods in turn support various applications in data communications, remote screen sharing, remote desktop delivery to assist teaching-learning, telemedicine, Desktop as a Service etc. In the literature we find systems requiring splitting assumes a fixed size split that do not change dynamically, also there is no analysis why that split is chosen in terms of performance. By doing mathematical analysis this paper first finds the efficient splitting schemes that can be easily automated to make a system adaptive. Thereafter, taking the screen motion detection as a case study, it demonstrates the effects of various splitting methods on motion detection performance. The simulation results clearly shows how classification performances varies with different splitting which will facilitate to choose the best splitting for a specific application scenario as well as making the system adaptive by providing dynamic splitting.

Development of Adaptive Endoscope Image Enhancer Using Histogram (Histogram을 이용한 적응형 내시경 Image Enhancer의 개발)

  • Lee, S.H.;Kim, J.H.;Song, C.G.;Lee, Y.M.;Kim, W.K.;Lee, M.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.05
    • /
    • pp.345-348
    • /
    • 1997
  • Endoscope image is the shape that a doctor sees inside of patient through endoscope. The characteristics of these images are much effected by the light source of endoscope, specially areas in short distance from a light have much light source and look clear, but areas in long distance from a light look dark relatively because of little light quantity. So we developed a new level adaptive image enhancer for the dark area in a endoscope image. The algorithm we made consists of three parts ; 1) Classification of histogram in segmented area 2) Smoothing and Adaptive Histogram Equalization 3) Adaptive Histogram Modification.

  • PDF

Classification of satellite image using pyramid structure and texture features (계층 구조와 텍스쳐 특징을 이용한 위성 영상의 분류)

  • Um, Gi-Mun;Kim, Jeong-Ho;Kim, Jeong-Kee;Lee, Kwae-Hi
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.449-452
    • /
    • 1992
  • Before performing an adaptive stereo matching using satellite images, classification is needed as a preprocessing step. This paper describes that classification of three land cover types : river, mountain, and agricultural fields. We proposed that classification algorithm using pyramid structure and texture features. Results of applying the proposed algorithm to satellite image improved classification accuracy.

  • PDF

Comparison of Classification Rate Between BP and ANFIS with FCM Clustering Method on Off-line PD Model of Stator Coil

  • Park Seong-Hee;Lim Kee-Joe;Kang Seong-Hwa;Seo Jeong-Min;Kim Young-Geun
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.5C no.3
    • /
    • pp.138-142
    • /
    • 2005
  • In this paper, we compared recognition rates between NN(neural networks) and clustering method as a scheme of off-line PD(partial discharge) diagnosis which occurs at the stator coil of traction motor. To acquire PD data, three defective models are made. PD data for classification were acquired from PD detector. And then statistical distributions are calculated to classify model discharge sources. These statistical distributions were applied as input data of two classification tools, BP(Back propagation algorithm) and ANFIS(adaptive network based fuzzy inference system) pre-processed FCM(fuzzy c-means) clustering method. So, classification rate of BP were somewhat higher than ANFIS. But other items of ANFIS were better than BP; learning time, parameter number, simplicity of algorithm.