
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 10, Oct. 2016 5074
Copyright ⓒ2016 KSII

Efficient Screen Splitting Methods - A Case
Study in Block-wise Motion Detection

Md. Abu Layek1, TaeChoong Chung1 and Eui-Nam Huh1

1 Department of Computer Science and Engineering, Kyung Hee University
Global Campus, Yongin, South Korea

 [e-mail: {layek,tcchung,johnhuh}@khu.ac.kr]
*Corresponding author: Eui-Nam Huh

Received March 10, 2016; revised July 20, 2016; accepted September 8, 2016;

 published October 31, 2016

Abstract

Screen splitting is one of the fundamental tasks in different methods including video and
image compression, screen classification, screen content coding and the like. These methods
in turn support various applications in data communications, remote screen sharing, remote
desktop delivery to assist teaching-learning, telemedicine, Desktop as a Service etc. In the
literature we find systems requiring splitting assumes a fixed size split that do not change
dynamically, also there is no analysis why that split is chosen in terms of performance. By
doing mathematical analysis this paper first finds the efficient splitting schemes that can be
easily automated to make a system adaptive. Thereafter, taking the screen motion detection as
a case study, it demonstrates the effects of various splitting methods on motion detection
performance. The simulation results clearly shows how classification performances varies
with different splitting which will facilitate to choose the best splitting for a specific
application scenario as well as making the system adaptive by providing dynamic splitting.

Keywords: Screen Splitting, Content Coding, Screen Classification, Desktop Delivery

This paper is supported by Institute for Information & communications Technology Promotion(IITP) grant funded
by the Korea government(MSIP) (B0101-16-0535, Development of Modularized In-Memory Virtual Desktop
System Technology for High Speed Cloud Service).

http://dx.doi.org/10.3837/tiis.2016.10.024 ISSN : 1976-7277

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 10, October 2016 5075

1. Introduction

Splitting is used in a variety of applications; image or video compression, high efficiency
video coding (HEVC), screen or image block classification, remote desktop delivery and so
on. Although the generic methods presented in this paper are applicable to any field, in our
context, splitting refers to the breaking down of image or desktop screen into equal sized
non-overlapping blocks. Research works on those fields usually assume a fixed size small
block (e.g. 4×4, 8×8, 16×16) and analyze their methods accordingly. Likewise, 8×8 DCT is
very popular in jpeg image compression [1] which needs to split a still image into a number of
8x8 blocks. Various literatures deal with image and video compression [2][3][4], classification
and screen content coding [5][6][7][8][9][10][11][12] which uses splitting into 8×8, 16×16,
32×32 sized blocks. Similarly, virtual desktop delivery protocol [13] and even a camera
application [14] also require splitting. In addition, some researches on provisioning Quality of
Experience (QoE) in remote desktop delivery using VNC-RFB protocol as well assume
splitting in a fixed block size [15][16][17]. The advantage of making the blocks equal size is
obvious; it is possible to apply same processing, scaling and coefficient constants on every
block. However, in some cases it is impossible to split into non-overlapping blocks of a fixed
size because it depends on the resolution and in those cases splitting creates a different sized
reminder blocks in each row which should be dealt differently than the equal sized blocks
adding extra burden in processing [2]. Sometimes block shapes are also important and to gain
extra advantage in provisioning better Quality of Experience it is desirable to choose square or
even rectangular block shapes. If there is an efficient algorithm, it will enable us to split and
adjust the block sizes dynamically. But no such algorithm which can efficiently split the image
or screen as per user defined dimension with the facility of automation and thus no way to
verify whether the chosen fixed splitting is the best suited for the problem scenario or not.

To solve the above problem, this paper deals with providing algorithms for efficient
splitting of images and desktop screen and then analyzing these algorithms for a specific
scenario of screen motion detection. We provide three algorithms for splitting; first algorithm
will split into largest square shaped (n×n pixels) non-overlapping blocks. Second algorithm
will also split into square shaped blocks but in this case maximum number of desired blocks
will be given. So, if the maximum number of desired square-shaped blocks increases it will
produce smaller size blocks while the third algorithm will split into blocks of arbitrary shape
and size based on the desired number of blocks in the width and height direction.

The remainder of this paper is organized as follows. Section 2 describes related works.
Section 3 describes the desktop splitting with mathematical analysis while section 4 presents
different approaches of splitting in algorithmic forms. As a specific use case, detailed analysis
employing splitting in motion detection by means of experiments, simulation and results is
presented in section 5, followed by the conclusion in Section 6.

2. Related Work

2.1 HRDP
There are several advantages of intercepting the hardware layer for desktop delivery to thin
clients and Hybrid Remote Display Protocol (HRDP) [15] utilizes this fact. The HRDP server
application intercepts the desktop pixel data from frame buffer of graphic card. Then, the
display desktop is divided into several rectangular areas. Depending on the number of changed

5076 Layek et al.: Screen Splitting Methods, Case Study in Motion Detection

pixels in a block, the motion detector will calculate the motion rate by comparing two adjacent
frames to find high motion areas in which the display updates are delivered by the MJPEG
module. The remaining areas are low motion where the display updates are handled by the
VNC module.

2.2 QHRDP
An adaptive desktop delivery scheme for DaaS was proposed in [17] which is an improvement
on the HRDP by selecting encoding adaptively. The paper recommended a Quality of
Experience (QoE) model that can quantify the QoE scores for different encodings (MJPEG
and VNC) and find out the most suitable scheme for a block. Part of the motion detection
algorithm is about finding the maximum sub-matrices which accumulates smaller motion
blocks into a larger one. Finally, With the increasing number of users, if the system cannot
meet the desired service requirement, the system negotiate with the users to decrease their
requirement for keeping satisfactory QoE.

Both HRDP and QHRDP used a fix splitting that needs to be chosen beforehand thus they
cannot take the advantage of adaptive splitting. Moreover, finding maximum sub-matrices in
QHRDP is very time consuming and dynamic programming approach of this task have a
complexity of O(n3) where n represents the number of blocks. In this context, we propose
some algorithms for efficient splitting which can be easily automated and thus making the
system adaptive.

3. Screen Splitting
As discussed earlier, we need to split the whole screen area into equal-sized and
non-overlapping blocks of integer dimensions where screen refers to the image, video or
desktop. If the dimension is ScreenWidth × ScreenHeight, the splitting process divides it into
RecWidth × RecHeight blocks termed as the outer rectangle. As a result, we get blocks of
dimension BlockWidth×BlockHeight where BlockWidth = ScreenWidth/RecWidth and
BlockHeight=ScreenHeight/RecHeight.

Fig. 1. Relationships between splitting parameters

From the outer rectangle and the block dimension we obtain the original screen
dimension by the relationships, ScreenWidth= BlockWidth*RecWidth and ScreenHeight=
BlockHeight*RecHeight. Fig. 1 illustrates screen splitting through an example. The
mathematical analysis presented below will clarify more.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 10, October 2016 5077

3.1 Mathematical Analysis
Let us consider the screen frame of dimension SW×SH where SW and SH are the screen width
and height respectively, the pixel data matrix FM of that frame can be represented as

11 12 1

21 22 2

1

... ...

... ...
 (1)

...
...

SW

SW

SH SHSW

P P P
P P P

FM

P P

 
 
 
 =
 
 
  

If we want to split the screen into non-overlapping blocks of dimension BW×BH, then the
block width should divide the screen width and block height divides the screen height without
reminder, i.e.

 and | | (2)BH SH BW SW
After split, number of blocks in height and width directions are

 Re (3)SHcH
BH

=

Re (4)SWcW
BW

=

And, total number of generated blocks,
 Re *Re (5)TB cH cW=

The rectangle matrix RM is defined as below
11 12 1Re

21 22 2Re

Re 1 Re Re

... ...

... ...

...
..

. ...

.

6

. .

()

cW

cW

cH cH cW

B B B
B B B

RM

B P

 
 
 
 =
 
 
  

Each entry Bxx in rectangle matrix is a block that can be expressed as matrix BM of
dimension BH×BW pixels. The Kth block on Nth row is expressed as Bnk and the corresponding
matrix BMnk is represented by means of original pixels as below

[(1)* 1][(1)* 1] [(1)* 1][(1)* 2] [(1)* 1][(1)*]

[(1)* 2][(1)* 1] [(1)* 2][(1)* 2] [(1)* 2][(1)*]

... ...

... ...
...
...

n BH k BW n BH k BW n BH k BW BW

n BH k BW n BH k BW n BH k BW BW

nk

P P P
P P P

BM

− + − + − + − + − + − +

− + − + − + − + − + − +

=

[(1)*][(1)* 1] [(1)*][(1)* 2] [(1)*][(1)*]. .

(7)

.. ..n BH BH k BW n BH BH k BW n BH BH k BW BWP P P− + − + − + − + − + − +

 
 
 
 
 
 
  

From the above generic matrix we can easily find the first block matrix BM11

11 12 1

21 22 2

11

1

... ...

... ...

...
... ...

 (8

. .

)

.

BW

BW

BH BHBW

P P P
P P P

BM

P P

 
 
 
 =
 
 
  

let, GCD be the greatest common divisor of screen dimensions SW and SH.

5078 Layek et al.: Screen Splitting Methods, Case Study in Motion Detection

In mathematics, the greatest common divisor (gcd) of two or more integers is the largest
positive integer that divides the numbers without a remainder. Thus, the split with largest
possible blocks have the dimension GCD×GCD. By definition,

| | GCD a (nd 9)GCDSH SW
Taking BW=BH=GCD, and using eq. 3 and 4 we get

Re (10)SH SHcH
BH GCD

= =

Re (11)SW SWcW
BW GCD

= =

from e.q. 10 and 11 we get block aspect ratio in the rectangle matrix
Re / (12)
Re /

cW SH GCD SH
cH SW GCD SW

= =

So, the block aspect ratio in e.q. 12 is equal to the original aspect ratio, also the blocks are
square shaped.

Now, let's split the screen frame into square blocks in smaller sizes. To do this we find the
divisors of the GCD. For integers m and n where m divides n, m is a divisor of n and is
written as m|n. The vector GCDdivs contains all divisors from 1 to GCD.

() 1 2, ,............. (1 3)nGCDdivs divisors GCD d d d  = =
where, d1=1 and dn=GCD

by definition, GCD|SH and GCD|SW, for any divisor di in GCDdivs we get

| | an (14)d i id SH SWd
Again, we get block aspect ratio in the rectangle matrix

/Re (15)
Re /

i

i

SH dcH SH
cW SW d SW

= =

also preserves the original aspect ratio. MaxDB is the maximum number of desired blocks and
the split should satisfy

 (16)TB MaxDB<=
where TB is as close to MaxDB as possible

On the contrary, to generate arbitrary shaped blocks we take the number of desired blocks
both in width and height direction as DWidth and DHeight respectively where

 * (17)MaxDB DHeight DWidth=
The divisor vectors for SH and SW are referred to as HeightDivs and WidthDivs and defined as

1 2 [, ,............,] (18) nHeightDivs Hd Hd Hd=
1 2 [, , ,] (19)nWidthDivs Wd Wd Wd=

where, Hd1=Wd1=1, Hdn =SH and Wdn =SW

There are total ScreenWidth*ScreenHeight possible combinations of desired blocks
while the actual number of possible splitting combinations is
length(WidthDivs)*length(HeightDivs). For any pair of (DHeight, DWidth) we need to find
the rectangle dimension (RecH, RecW) from the vectors (HeightDivs, WidthDivs) keeping the
shortest difference among the corresponding elements as defined below

 [min{ ()}] (2 0) iI Loc abs Hd DHeight= −
 [min{ ()}] 2 (1)jJ Loc abs Wd DWidth= −

Re () (22)icH HeightDivs I=
Re () (23)jcW WidthDivs J=

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 10, October 2016 5079

1 Re *Re (24)i jTB cH cW=

But we don't know whether TB1 in e.q 24 satisfies e.q 16 or not. Thus we find more rectangle
dimension pairs using neighboring divisors as follows.

2 1Re *Re (25)i jTB cH cW−=

3 1Re *Re (26)i jTB cH cW −=

4 1Re *Re (27)i jTB cH cW+=

5 1Re *Re (28)i jTB cH cW +=

6 1 1Re *Re (29)i jTB cH cW− −=

then the total block TBi which is closest but not exceeds MaxDB is found and corresponding
rectangle dimension is determined.

4. Splitting Algorithms
In this section, considering different approaches of screen splitting we will organize into
formal algorithms. The 'flower.jpg' image file of dimension 240×160 pixels (available at
http://layek.itrrc.com/files/flower.jpg) will be used as a running example.

There are many choices of split depending on number of desired blocks, the size of the
blocks and the shapes such as square, horizontal or vertical rectangular. When choosing a
rectangular shape the question again arises what should be the aspect ratio of the outer
rectangle.

In the simplest case, let us consider we have only two information available i.e. width and
height. Our example image has the aspect ratio 3:2 and can be split the image into 3 * 2 = 6
blocks. Here, the outer rectangle matrix will also have the same ratio and the created blocks are
square sized of 80×80 as in Fig. 2.

Fig. 2. Split generating largest blocks based on aspect ratio

Algorithm 1 splits the screen preserving block aspect ratio in the rectangle dimensions which
creates largest blocks that is less than the whole screen. Equations 1-8 in the mathematical
analysis presented on section 3 define the general parameters. Then we find the greatest
common divisor (gcd) of screen dimensions which is the largest value that can divide both of
them without remainder (equations 9- 12). Thus, to get largest non-overlapping square blocks,
we take this gcd value as the block dimensions and number of blocks in both screen
dimensions (RecHeight and RecWidth) are calculated accordingly. The variable GCD in the
algorithm refers to this value of greatest common divisor of screen width and height. As an
exception, if the GCD of screen width and screen height is 1 then there will be no split. GCD of
our example image is gcd(240,160)=80.

5080 Layek et al.: Screen Splitting Methods, Case Study in Motion Detection

Besides, considering square shaped blocks in smaller sizes, for example 40×40 block
also preserves the block aspect ratio where RecWidth=6, RecHeight=4 and total blocks TB=24,
20×20 blocks (RecWidth=12, RecHeight=8, TB=96) and so on. As a result, in this second
approach another parameter MaxNumberOfBlocks is used to set the upper limit for the number
of blocks after split. When the desired number of blocks is less than the number of largest
blocks it will return the whole screen itself which is an exception. The divisor vector GCDdivs
of example image is given as, GCDdivs=divisors(80)=[1,2,4,5,8,10,16,20,40,80]

Algorithm 2 is based on equations 13-16 illustrates the detail approach whereas Fig 3
shows the splitting for two different values of maximum number of blocks for example image.
Here, both splittings have the block aspect ratio 6:4=15:10=3:2 which preserves the original
image aspect ratio 240:160=3:2. Each of Every divisors in GCDdivs also divides both screen
height and width giving square blocks. As the maximum number of desired square-shaped
blocks increases it will produce smaller size blocks. We only need to check the number of
blocks does not exceed the maximum number of blocks (step 6). The last step is to deal with
the exception case when the gcd is 1.

Fig. 3. Splitting based on maximum number of desired blocks preserving the block aspect ratio.

Algorithm1: SplitAspectRatio(ScreenHeight , ScreenWidth)
Input: Height and Width of the screen
Output: Number of screen blocks in height direction (RecHeight) and in width direction (RecWidth)

1: GCD=GreatestCommonDivisor(ScreenHeight , ScreenWidth)
2: RecHeight = ScreenHeight/GCD
3: RecWidth = ScreenWidth /GCD

Algorithm2: SplitAspectRatioGivenBlocks(ScreenHeight, ScreenWidth, MaxNumberOfBlocks)
Input: Height and Width of the screen and the maximum number of blocks
Output: Number of screen blocks in height direction (RecHeight) and in width direction (RecWidth)

 1: GCD=GreatestCommonDivisor(ScreenHeight , ScreenWidth)
 2: GCDdivs=divisors(GCD)

 3: for i=1:length(GCDdivs)
 4: RecHeight=vidHeight/GCDdivs(i)
 5: RecWidth=vidWidth/GCDdivs(i)

 6: if (MaxNumberOfBlocks>=RecHeight*RecWidth)
 7: return
 8: endif

 9: end of step 3 loop
10: RecHeight=RecWidth= 1

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 10, October 2016 5081

Fig. 4. Flow diagram for algorithm 3, splitting into arbitrary sized blocks

Algorithm3: SplitArbitrary (ScreenHeight, ScreenWidth , DHeight , DWidth)
Input: Height and Width of the screen, Number of desired blocks toward height and width
Output: Number of screen blocks in height direction (RecH) and in width direction (RecW)

 1. MaxDB= DHeight * DWidth
 2. HeightDivs=divisors(ScreenHeight)
 3. WidthDivs=divisors(ScreenWidth)
 4. Find the divisor HeightDivs[I] in HeightDivs vector which is closest to DHeight
 5. Find the divisor WidthDivs[J] in WidthDivs vector which is closest to DWidth
 6. Calculate the Total Blocks, TB=HeightDivs[I]*WidthDivs[J], then replace the values of I,J with the pairs

(I-1,J), (I,J-1), (I+1,J), (I,J+1), (I-1,J-1) and compute the corresponding TBs. Discard the values where any
of the element in the pair does not exist.

 7. Finally, find the TB that is closest to but not exceeds MaxNumberOfBlocks and select the corresponding
height and width divisor as the values of RecH and RecW.

5082 Layek et al.: Screen Splitting Methods, Case Study in Motion Detection

In the first two approaches, only square shaped blocks is obtained that preserve block aspect
ratio in the outer rectangle. However, square blocks are rarely found and in case of example
image square split can be generated only into 6 (3×2), 24 (6×4), 96 (12×8), 150 (15×10), 384
(24×16), 600 (30×20), 1536 (48×32), 2400 (60×40), 9600 (120×80), 38400 (240×160)
blocks. But users may not always interested or require square blocks. Based on the analysis
through e.q. 17 to 29, Algorithm 3 formally states the step by step arbitrary splitting process
while the detailed flow diagram is given in Fig. 4 for easy illustration.

In Fig. 5, example image is split into 1×16, 16×1, 5×6 and 12×32 blocks. Here, our
goal is to split the image into non-overlapping equal sized blocks that is very much close to
specified dimension of outer rectangle. Let's see in a bit details how the algorithm works when
splitting the image into 18 blocks in width direction and 14 blocks in the height direction
totaling 18*14=252 blocks indicating the maximum number of blocks. The divisor vectors
are:

WidthDivs=divisors(240)=[1,2,3,4,5,6,8,10,12,15,16,20,24,30,40,48,60,80,120,240]
HeightDivs=divisors(160)=[1,2,4,5,8,10,16,20,32,40,80,160]

In this case, at first the algorithm will find divisors closest to 18 and 14 from the vectors
WidthDivs and HeightDivs which is 16 in both directions making the total number of blocks
256 that exceeds the total desired number 252. After that, the algorithm checks the nearest
block dimension pairs which are 15×10, 15×16, 15×20, 16×10, 16×20, 20×10, 20×16 and
20×20 from the divisor vectors. From these pairs the algorithm will selects 15×16 (Fig. 5-d)
generating 240 blocks that is the closest to but not exceeds 252.

Fig. 5. Splitting in arbitrary sized blocks

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 10, October 2016 5083

5. Application in Motion detection
The current section will present a motion detection approach and perform some experiments
to see the effects of different splitting on the performance of desktop screen motion detection.

5.1 Motion detection
The motion detection approach in this section is based on the procedure discussed in [17].
Here, only the essential parts are used which is sufficient to explain the algorithms. Steps are
described in Fig. 6 and detail is as follows:
a. Breaking up the display screen into meshed rectangular areas: This process divides up
the desktop screen into small blocks with same sizes using the algorithms defined in the
previous sections. In this way we get a rectangle matrix of dimension RecHeight×RecWidth,
where RecHeight is the number of small vertical blocks and RecWidth is the number of small
horizontal blocks.

b. Obtaining the update count in each block and Ignoring small noise: In this phase, the
number of pixels are counted that are different from the previous frame for each small block
and are stored as corresponding element in the matrix CV[RecHeight][RecWidth] which can
be defined as follows.

CV[i][j]=CountTheNumberOfChangedPixelsForEachBlock();

c. Labelling the blocks as motion and non-motion or different motion classes : The next
stage compute the percent of motion pixels out of the total number of pixels in a block then
label as motion or non-motion based on a threshold value. Conversely, it is also possible to
divide the blocks into several motion classes to encode them with different coders. Fig. 7
further illustates the process by means of an example.

Fig. 6. Motion detection process

5084 Layek et al.: Screen Splitting Methods, Case Study in Motion Detection

Fig. 7. Example of screen splitting and classification

5.2 Performance metrics
Determining high motion and low motion is essentially a classification problem, thus
classification evaluation methods can be applied. Detected blocks are compared with the
original clip and the confusion matrix is formed as described in Table 1.

Table 1. Confusion matrix for classification
 Detected Pixel

Actual Pixel
 High Motion =Yes High Motion =No

High Motion=Yes True Positive (TP) False Negative (FN)
High Motion =No False Positive (FP) True Negative (TN)

From the confusion matrix we can evaluate classification performance with several following
metrics.

Accuracy: accuracy means proportion of true results (true positives and true negatives) with
the total number of cases i.e. TP +TNAccuracy =

TP + TN + FP + FN

Precision: the proportion of the true positives against all the positive results (both true
positives and false positives) is termed as precision i.e. TPPrecision

TP FP
=

+

Recall: recall is the proportion of positives that are correctly identified i.e. TPRe
TP FN

call =
+

Specificity: specificity is the proportion of negatives that are correctly identified i.e.
TNSpecificity

TN FP
=

+

Balance Accuracy: balanced accuracy is defined as the arithmetic mean of sensitivity and
specificity which is used to avoid inflated performance estimates on imbalanced datasets i.e.

1 Re
2 2

TP TN call SpecificityBalancedAccuracy
TP FN TN FP

+ = + = + + 

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 10, October 2016 5085

F1-Score: f1-score also avoids inflated performance estimates on imbalanced datasets and
defined as,

callecision
callecisionScoreF

RePr
Re.Pr.2

1 +
=−

Classification error: classification error is the proportion of false results among the total
number of cases i.e. FP FN

TP TN FP FN
ClassificationError +

=
+ + +

Balance error: to avoid inflated performance estimates on imbalanced datasets balanced
error is used and defined as, 1

2
FP FNBalancedError

TP FN TN FP
 = + + + 

The error properties i.e. classification and balance errors are just the reverse metric of accuracy
and balance accuracy respectively thus these metrics are excluded from the figures.

5.3 Experiment setup
To show the effect of splitting algorithms in screen motion detection, several high motion and
low motion elements are arranged on desktop and the screen is captured with TinyTake video
capture program then the screen movie is saved as a video file. Screenshot of the video file is
given in Fig. 8 that can be downloaded from http://layek.itrrc.com/files/MixedDesktop.mp4.
The general properties of the video file is given in Table 2.

Table 2. General properties of the captured mixed screen video file
Property Value

File Name MixedDesktop.mp4
Duration 10.40 Seconds
Number of Frames 79
Width 1920
Height 1080
Frame Rate 7.71 frames/ second
Bits Per Pixel 24
Video Format RGB24

5.4 Block-wise motion rate calculation
The experiments were done on MATLAB R2014b. First, we read the video file and store the
data in a variable. Splitting algorithms then determine the rectangle size and the block size.
Maximum changes of pixel value that can be happened to a color pixel is 765 (255+255+255).
In our motion detection approach, average changes for each pixel in the first 30 frames were
calculated and filtered by only considering a pixel as motion if the change of the pixel value is
at least 115(about 15% of maximum possible change). Fig. 9 and Fig. 10 shows the plot of the
changes without and with filtering respectively where white color represents motion pixels.
After this process the data matrix becomes one zero matrix.

5086 Layek et al.: Screen Splitting Methods, Case Study in Motion Detection

Fig. 8. Screenshot of the mixed screen movie file.

Fig. 9. Plot of average pixel changes for 30 frames

Fig. 10 Plot of pixel changes after filtering

In the next step, block-wise percent of motion pixels of the total number of pixels in a
block is calculated as shown in Fig. 11. Now, it is the time to classify the blocks based on the
percent of motion. Dividing the screen into multiple class of motion rates with multiple
threshold values is also possible and then different encoding schemes can be used for those
classes. However, as said earlier to keep the analyses and calculation simple only high motion
and low motion classes are used in the following experiments.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 10, October 2016 5087

Fig. 11. Block-wise percent of motion

Fig. 12. Motion detection for thresholds 1, 3, 10 and 20

5.5 Determining the threshold
At this moment, the vital task is to select threshold value that will determine the high and low
motion blocks because the performance of detection depends on the threshold. In Fig. 12
detected motion regions for the thresholds 1, 3, 10 and 20 are shown which clearly
demonstrates the differences. Still, we cannot determine the best threshold for current scenario
therefore performances should be compared with the varying thresholds. The binary matrices
before and after the detection are compared and the confusion matrix is formed where Table 3
is used to find True Positives (TP),True Negatives (TN), False Positives (FP) and False
Negatives (FN) for every pixel. Finally, some arbitrary splitting are taken and average
performances for every thresholds varying from 1 to 50 are plotted which is shown in Fig. 13
whereas the best threshold value is approximated as 3.

Choosing a threshold value is application dependent and on the basis of the metrics that
are given importance. In our scenario both recall and precision have been given higher
preference. Recall measures the percent of motion from original is detected and precision
measures the percent of detected motion which is detected correctly. The figure shows the
intersection point of these metrics is about 3 and is selected as the threshold value.

5088 Layek et al.: Screen Splitting Methods, Case Study in Motion Detection

Table 3. Computing confusion matrix for a single pixel
Actual (X) Detected (Y) Z=2Y-X

1 1 1 TP
1 0 -1 FN
0 1 2 FP
0 0 0 TN

Fig. 13. Classification performances with varying threshold values

5.6 Performance analysis

Fig. 14. Performances with varying Maximum number of blocks

Present section analyzes the classification performances from different viewpoints. Initially,
taking different maximum number of blocks Algorithm 2 generates aspect ratio preserving
splits and performance simulations are performed accordingly, Fig. 14 shows the results. In
the performance plots some steady parts are found because the same split happens for a range

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 10, October 2016 5089

of maximum desired blocks. The GCD of 1920 and 1080 are 120,
GCDdivsors=divisors(120)=[1,2,3,4,5,6,8,10,12,15, 20,24,30,40,60,120], total number of
elements is 16 hence there are only 16 distinct splits in this case as compared to the number of
choices for maximum desired blocks which is 1 to 1920*1080.
 Fig. 15 shows the performance simulations for arbitrary splitting generated by
Algorithm 3. We observe that the same number of blocks but different aspect ratio i.e. varying
shaped blocks happens many times and the performance also varies with the aspect ratio. For
instance, in our screen video the three splits (1,4),(2,2) and (4,1) each generates 4 blocks with
block dimensions (1920×270, (960×540) and (480×1080) respectively whereas the
accuracies are 54.9%, 79.69%, 74.91% and recalls are 82.58%, 81.10% 49.40% respectively.
So, the performance improvement with the increasing number of blocks is not regular in all the
points therefore the effect of block aspect ratio is evident which pushes us to analyze further in
different ways.

Fig. 15. Performances with varying number of blocks for arbitrary splitting

Fig. 16. Performances with varying number of blocks for the ratio 16/9

5090 Layek et al.: Screen Splitting Methods, Case Study in Motion Detection

Fig. 17. Performances with varying number of blocks for different ratios

As a consequence, all 1024 possible splitting are simulated which is the product of width
and height divisors length. Different combination of rectangular dimensions can also have
same ratio so the results are filtered keeping the ratio fixed and the performances with the
increasing number of blocks are plotted. Fig. 16 and Fig. 17 show the plots for ratio 16/9 and
for several other ratios respectively. These two figures clearly reveal the strong relationship
between number of blocks and classification performances. Specificity is showing best and
most stable performance which means detection has smaller number of false positives. On the
other hand, precision tends to increase steadily with the increasing number of blocks.

Fig. 18. Performances with varying ratio deviation for the fixed number of blocks 3840

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 10, October 2016 5091

Fig. 19. Performances with varying ratio deviation for different fixed number of blocks

Fig. 20. Computation time with the increasing number of blocks

Fig. 21. Computation time with varying ratio deviation for different fixed number of blocks

5092 Layek et al.: Screen Splitting Methods, Case Study in Motion Detection

It is time to see the effect of ratio on the performances. All combinations of ratios lies
between 1 and 0 where RecWidth<RecHeight while considering the ratio RecWidth/RecHeight
and conversely. For this reason, two types of ratios are computed i.e. forward
(RecWidth/RecHeight) where RecWidth>RecHeight and reverse (RecHeight/RecWidth) where
RecWidth<RecHeight and find the deviation from the original aspect ratio which is 16/9
forward and 9/16 reverse. Again, in this case several block dimensions and ratio can generate
equal number of blocks. The effect of ratio deviation on the performances for fixed number of
blocks 3840 is shown in Fig. 18 whereas several others are presented in Fig. 19 where the
upper column for forward ratio and bottom for reverse ratio, revealing the general tendency
that performances decrease with the increasing ratio deviation. Here again specificity shows
the most stable performance and precision is shown to be the most sensitive with ratio
deviation.

At this point, it is clear that classification performance increases with the increasing
number of blocks and decreases with increasing ratio deviation where number of blocks have
stronger influence. But increasing number of blocks incurs additional cost and thus degrade
performance. Elapsed time increases almost linearly with the number of blocks (Fig. 20).
Although MATLAB scripts consisting loops usually take longer time than actual
implementation with other languages, the proportional increase of time is significant.
Moreover, we notice considerable increase in memory usage as well as CPU utilization when
running the motion detection algorithm with large number of blocks. Additionally, we plot the
elapsed time with ratio deviation for fixed number of blocks in four cases which does not
reveal any key effect of ratio deviation on elapsed time (Fig. 21).

6. Conclusions
This paper first analyses the screen splitting approaches and organized them into formal
algorithms. Then it took desktop motion detection as a case study and through different
experimental evaluations demonstrated how the classification performances are affected by
splitting strategies. The screen scenario made by arranging several motion/animations and
non-motion/document areas then experiments were performed and measured the
performances for different splitting. From the results, it is clear that performance increases
with increasing number of blocks and decreases as the ratio deviation increases though the
rates are not same. However, increasing number of blocks increases the resource usage
massively while changing only the ratio keeping the number of blocks same does not show any
significant effect on system resource consumption. The basic splitting algorithms proposed in
this paper can be applied in a variety of applications and easily automated. By run-time
verification it can find suitable splits in specific scenarios, for instance the remote desktop
delivery solution can incorporate dynamic splitting to support better Quality of Experience.

References
[1] G. K. Wallace, “The JPEG still picture compression standard,” Consum Electron, IEEE Trans.

On, vol. 38, no. 1, pp. xviii–xxxiv, 1992. Article (CrossRef Link).
[2] T. Vlachos, “Detection of blocking artifacts in compressed video,” Electron. Lett., vol. 36, no. 13,

pp. 1106–1108, 2000. Article (CrossRef Link).
[3] H. Yang, W. Lin, and C. Deng, “Learning based screen image compression,” in Proc. of

Multimedia Signal Processing (MMSP), 2012 IEEE 14th International Workshop on, 2012, pp.
77–82. Article (CrossRef Link).

http://dx.doi.org/doi:10.1109/30.125072
http://dx.doi.org/doi:10.1049/el:20000847
http://dx.doi.org/doi:10.1109/mmsp.2012.6343419

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 10, October 2016 5093

[4] A. Said, “Compression of compound images and video for enabling rich media in embedded
systems,” Electronic Imaging 2004, pp. 69–82, 2004. Article (CrossRef Link).

[5] Y. Shen, J. Li, Z. Zhu, and Y. Song, “Classification-Based Adaptive Compression Method for
Computer Screen Image,” in Proc. of 2012 IEEE International Conference on Multimedia and
Expo Workshops (ICMEW), pp. 7–12, 2012. Article (CrossRef Link).

[6] I. Keslassy, M. Kalman, D. Wang, and B. Girod, “Classification of compound images based on
transform coefficient likelihood,” in Proc. of 2001 International Conference on Image
Processing, 2001, vol. 1, pp. 750–753 vol.1, 2001. Article (CrossRef Link).

[7] S. Ebenezer Juliet and D. Jemi Florinabel, “Efficient block prediction-based coding of computer
screen images with precise block classification,” IET Image Process., vol. 5, no. 4, pp. 306–314,
Jun. 2011. Article (CrossRef Link).

[8] N. T. An, C.-T. Huynh, B. Lee, C. S. Hong, and E.-N. Huh, “An efficient block classification for
media healthcare service in mobile cloud computing,” Multimed. Tools Appl., vol. 74, no. 14, pp.
5209–5223, 2015. Article (CrossRef Link).

[9] Z. Pan, H. Shen, Y. Lu, S. Li, and N. Yu, “A Low-Complexity Screen Compression Scheme for
Interactive Screen Sharing,” IEEE Trans. Circuits Syst. Video Technol., vol. 23, no. 6, pp.
949–960, Jun. 2013. Article (CrossRef Link).

[10] S. Hu, R. A. Cohen, A. Vetro, and C.-C. J. Kuo, “Screen content coding for HEVC using edge
modes,” in Proc. of 2013 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 1714–1718, 2013. Article (CrossRef Link).

[11] W. Zhu, W. Ding, J. Xu, Y. Shi, and B. Yin, “Screen Content Coding Based on HEVC
Framework,” IEEE Trans. Multimed., vol. 16, no. 5, pp. 1316–1326, Aug. 2014.

 Article (CrossRef Link).
[12] Z. Ma, W. Wang, M. Xu, and H. Yu, “Advanced Screen Content Coding Using Color Table and

Index Map,” IEEE Trans. Image Process., vol. 23, no. 10, pp. 4399–4412, Oct. 2014.
 Article (CrossRef Link).
[13] P. Simoens, P. Praet, B. Vankeirsbilck, J. De Wachter, L. Deboosere, F. De Turck, B. Dhoedt,

and P. Demeester, “Design and implementation of a hybrid remote display protocol to optimize
multimedia experience on thin client devices,” in Proc. of Telecommunication Networks and
Applications Conference, 2008. ATNAC 2008. Australasian, pp. 391–396, 2008.

 Article (CrossRef Link).
[14] R. Vaisenberg, A. Della Motta, S. Mehrotra, and D. Ramanan, “Scheduling sensors for

monitoring sentient spaces using an approximate POMDP policy,” Pervasive Mob. Comput., vol.
10, pp. 83–103, 2014. Article (CrossRef Link).

[15] W. Tang, B. Song, M. S. Kim, N. T. Dung, and E. N. Huh, “Hybrid remote display protocol for
mobile thin client computing,” in Proc. of Computer Science and Automation Engineering
(CSAE), 2012 IEEE International Conference on, vol. 2, pp. 435–439, 2012.

 Article (CrossRef Link).
[16] B. Song, W. Tang, T.-D. Nguyen, M. M. Hassan, and E. N. Huh, “An optimized hybrid remote

display protocol using GPU-assisted M-JPEG encoding and novel high-motion detection
algorithm,” J. Supercomput., vol. 66, no. 3, pp. 1729–1748, 2013. Article (CrossRef Link).

[17] M. A. Layek, T. Chung, and E.-N. Huh, “Adaptive Desktop Delivery Scheme for Provisioning
Quality of Experience in Cloud Desktop as a Service,” Comput. J., p. bxv116, Jan. 2016.

 Article (CrossRef Link).

http://dx.doi.org/doi:10.1117/12.532433
http://dx.doi.org/doi:10.1109/ICMEW.2012.9
http://dx.doi.org/doi:10.1109/icip.2001.959154
http://dx.doi.org/doi:10.1049/iet-ipr.2009.0237
http://dx.doi.org/doi:10.1007/s11042-014-2039-6
http://dx.doi.org/doi:10.1109/TCSVT.2013.2243056
http://dx.doi.org/doi:10.1109/ICASSP.2013.6637945
http://dx.doi.org/doi:10.1109/TMM.2014.2315782
http://dx.doi.org/doi:10.1109/TIP.2014.2346995
http://dx.doi.org/doi:10.1109/atnac.2008.4783356
http://dx.doi.org/doi:10.1016/j.pmcj.2013.10.014
http://dx.doi.org/doi:10.1109/csae.2012.6272809
http://dx.doi.org/doi:10.1007/s11227-013-0972-1
http://dx.doi.org/doi:10.1093/comjnl/bxv116

5094 Layek et al.: Screen Splitting Methods, Case Study in Motion Detection

Md. Abu Layek received his B.Sc. and M.Sc. degrees from Information and
Communication Engineering department, Islamic University, Bangladesh in 2004 and
2006 respectively. He is an Assistant Professor in the department of Computer Science
and Engineering, Jagannath University, Dhaka, Bangladesh. At present, he is pursuing his
PhD in Computer Science and Engineering, Kyung Hee University, Republic of Korea.
His current research interest includes Cloud Computing, Virtual Desktop Infrastructure,
Internet of Things and Ubiquitous Computing.

TaeChoong Chung received the B.S. degree in Electronic Engineering from Seoul
National University, Republic of Korea, in 1980, and the M.S. and Ph.D. degrees in
Computer Science from KAIST, Republic of Korea, in 1982 and 1987, respectively.
Since 1988, he has been with Department of Computer Engineering, Kyung Hee
University, Republic of Korea, where he is now a Professor. His research interests include
Machine Learning, Meta Search, and Robotics.

Eui-Nam Huh earned a B.S. degree from Busan National University in Korea, a
Master’s degree in Computer Science from the University of Texas, USA in 1995, and a
Ph.D. degree from the Ohio University, USA in 2002. He is the director of Real-time
Mobile Cloud Research Center. He is a chair of Cloud/BigData Special Technical
Committee for Telecommunications Technology Association(TTA), and a Korean
national standards body of ITU-T SG13 and ISO/IEC SC38. He was also an Assistant
Professor at Sahmyook University and Seoul Women’s University, South Korea. He is
now a Professor in the Department of Computer Science and Engineering, Kyung Hee
University, South Korea. His research interests include Networking, Internet of Things,
Distributed Real-Time Systems, Network Security, Cloud Computing, and Big Data.

