• Title/Summary/Keyword: adaptive bin

Search Result 81, Processing Time 0.023 seconds

Blind Source Separation U sing Variable Step-Size Adaptive Algorithm in Frequency Domain

  • Park Keun-Soo;Lee Kwang-Jae;Park Jang-Sik;Son Kyung Sik
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.6
    • /
    • pp.753-760
    • /
    • 2005
  • This paper introduces a variable step-size adaptive algorithm for blind source separation. From the frequency characteristics of mixed input signals, we need to adjust the convergence speed regularly in each frequency bin. This algorithm varies a step-size according to the magnitude of input at each frequency bin. This guarantee of the regular convergence in each frequency bin would become more efficient in separation performances than conventional fixed step-size FDICA. Computer simulation results show the improvement of about 5 dB in signal to interference ratio (SIR) and the better separation quality.

  • PDF

An Efficient Bit-Level Lossless Grayscale Image Compression Based on Adaptive Source Mapping

  • Al-Dmour, Ayman;Abuhelaleh, Mohammed;Musa, Ahmed;Al-Shalabi, Hasan
    • Journal of Information Processing Systems
    • /
    • v.12 no.2
    • /
    • pp.322-331
    • /
    • 2016
  • Image compression is an essential technique for saving time and storage space for the gigantic amount of data generated by images. This paper introduces an adaptive source-mapping scheme that greatly improves bit-level lossless grayscale image compression. In the proposed mapping scheme, the frequency of occurrence of each symbol in the original image is computed. According to their corresponding frequencies, these symbols are sorted in descending order. Based on this order, each symbol is replaced by an 8-bit weighted fixed-length code. This replacement will generate an equivalent binary source with an increased length of successive identical symbols (0s or 1s). Different experiments using Lempel-Ziv lossless image compression algorithms have been conducted on the generated binary source. Results show that the newly proposed mapping scheme achieves some dramatic improvements in regards to compression ratios.

Adaptive Observer-based Fast Fault Estimation

  • Zhang, Ke;Jiang, Bin;Cocquempot, Vincent
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.3
    • /
    • pp.320-326
    • /
    • 2008
  • This paper studies the problem of fault estimation using adaptive fault diagnosis observer. A fast adaptive fault estimation (FAFE) approximator is proposed to improve the rapidity of fault estimation. Then based on linear matrix inequality (LMI) technique, a feasible algorithm is explored to solve the designed parameters. Furthermore, an extension to sensor fault case is investigated. Finally, simulation results are presented to illustrate the efficiency of the proposed FAFE methodology.

A Subband Adaptive Blind Equalization Algorithm for FIR MIMO Systems (FIR MIMO 시스템을 위한 부밴드 적응 블라인드 등화 알고리즘)

  • Sohn, Sang-Wook;Lim, Young-Bin;Choi, Hun;Bae, Hyeon-Deok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.2
    • /
    • pp.476-483
    • /
    • 2010
  • If the data are pre-whitened, then gradient adaptive algorithms which are simpler than higher order statistics algorithms can be used in adaptive blind signal estimation. In this paper, we propose a blind subband affine projection algorithm for multiple-input multiple-output adaptive equalization in the blind environments. All of the adaptive filters in subband affine projection equalization are decomposed to polyphase components, and the coefficients of the decomposed adaptive sub-filters are updated by defining the multiple cost functions. An infinite impulse response filter bank is designed for the data pre-whitening. Pre-whitening procedure through subband filtering can speed up the convergence rate of the algorithm without additional computation. Simulation results are presented showing the proposed algorithm's convergence rate, blind equalization and blind signal separation performances.

Content-Based Image Retrieval using Color Feature of Region and Adaptive Color Histogram Bin Matching Method (영역의 컬러특징과 적응적 컬러 히스토그램 빈 매칭 방법을 이용한 내용기반 영상검색)

  • Park, Jung-Man;Yoo, Gi-Hyoung;Jang, Se-Young;Han, Deuk-Su;Kwak, Hoon-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.364-366
    • /
    • 2005
  • From the 90's, the image information retrieval methods have been on progress. As good examples of the methods, Conventional histogram method and merged-color histogram method were introduced. They could get good result in image retrieval. However, Conventional histogram method has disadvantages if the histogram is shifted as a result of intensity change. Merged-color histogram, also, causes more process so, it needs more time to retrieve images. In this paper, we propose an improved new method using Adaptive Color Histogram Bin Matching(AHB) in image retrieval. The proposed method has been tested and verified through a number of simulations using hundreds of images in a database. The simulation results have Quickly yielded the highly accurate candidate images in comparison to other retrieval methods. We show that AHB's can give superior results to color histograms for image retrieval.

  • PDF

Noise Suppression Using Normalized Time-Frequency Bin Average and Modified Gain Function for Speech Enhancement in Nonstationary Noisy Environments

  • Lee, Soo-Jeong;Kim, Soon-Hyob
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.1E
    • /
    • pp.1-10
    • /
    • 2008
  • A noise suppression algorithm is proposed for nonstationary noisy environments. The proposed algorithm is different from the conventional approaches such as the spectral subtraction algorithm and the minimum statistics noise estimation algorithm in that it classifies speech and noise signals in time-frequency bins. It calculates the ratio of the variance of the noisy power spectrum in time-frequency bins to its normalized time-frequency average. If the ratio is greater than an adaptive threshold, speech is considered to be present. Our adaptive algorithm tracks the threshold and controls the trade-off between residual noise and distortion. The estimated clean speech power spectrum is obtained by a modified gain function and the updated noisy power spectrum of the time-frequency bin. This new algorithm has the advantages of simplicity and light computational load for estimating the noise. This algorithm reduces the residual noise significantly, and is superior to the conventional methods.

An Empirical Study on Supply Chain Demand Forecasting Using Adaptive Exponential Smoothing (적응적 지수평활법을 이용한 공급망 수요예측의 실증분석)

  • Kim, Jung-Il;Cha, Kyoung-Cheon;Jun, Duk-Bin;Park, Dae- Keun;Park, Sung-Ho;Park, Myoung-Whan
    • IE interfaces
    • /
    • v.18 no.3
    • /
    • pp.343-349
    • /
    • 2005
  • This study presents the empirical results of comparing several demand forecasting methods for Supply Chain Management(SCM). Adaptive exponential smoothing using change detection statistics (Jun) is compared with Trigg and Leach's adaptive methods and SAS time series forecasting systems using weekly SCM demand data. The results show that Jun's method is superior to others in terms of one-step-ahead forecast error and eight-step-ahead forecast error. Based on the results, we conclude that the forecasting performance of SCM solution can be improved by the proposed adaptive forecasting method.

EER-ASSL: Combining Rollback Learning and Deep Learning for Rapid Adaptive Object Detection

  • Ahmed, Minhaz Uddin;Kim, Yeong Hyeon;Rhee, Phill Kyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.12
    • /
    • pp.4776-4794
    • /
    • 2020
  • We propose a rapid adaptive learning framework for streaming object detection, called EER-ASSL. The method combines the expected error reduction (EER) dependent rollback learning and the active semi-supervised learning (ASSL) for a rapid adaptive CNN detector. Most CNN object detectors are built on the assumption of static data distribution. However, images are often noisy and biased, and the data distribution is imbalanced in a real world environment. The proposed method consists of collaborative sampling and EER-ASSL. The EER-ASSL utilizes the active learning (AL) and rollback based semi-supervised learning (SSL). The AL allows us to select more informative and representative samples measuring uncertainty and diversity. The SSL divides the selected streaming image samples into the bins and each bin repeatedly transfers the discriminative knowledge of the EER and CNN models to the next bin until convergence and incorporation with the EER rollback learning algorithm is achieved. The EER models provide a rapid short-term myopic adaptation and the CNN models an incremental long-term performance improvement. EER-ASSL can overcome noisy and biased labels in varying data distribution. Extensive experiments shows that EER-ASSL obtained 70.9 mAP compared to state-of-the-art technology such as Faster RCNN, SSD300, and YOLOv2.