• Title/Summary/Keyword: adaptive allocation

Search Result 289, Processing Time 0.032 seconds

A Fast Converged Solution for Power Allocation of OFDMA System

  • Hwang, Sungho;Cho, Ho-Shin
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.721-725
    • /
    • 2014
  • In this paper, we propose a fast adaptive power allocation method for an orthogonal frequency division multiple access (OFDMA) system that employs an adaptive modulation and coding (AMC) scheme. The proposed scheme aims to reduce the calculation complexity of greedy adaptive power allocation (APA), which is known as the optimal algorithm for maximizing the utility argument of power. Unlike greedy APA, which starts power allocation from "0", the proposed algorithm initially allocates a certain level of power determined by the water-filling scheme. We theoretically demonstrate that the proposed algorithm has almost the same capability of maximizing the utility argument as the greedy APA while reducing the number of operations by 2M, where M is the number of AMC levels.

Adaptive and Prioritized Random Access and Resource Allocation Schemes for Dynamic TDMA/TDD Protocols

  • Choi, Hyun-Ho
    • Journal of information and communication convergence engineering
    • /
    • v.15 no.1
    • /
    • pp.28-36
    • /
    • 2017
  • The medium access control (MAC) protocol based on dynamic time division multiple access/time division duplex (TDMA/TDD) is responsible for random access control and radio resource allocation in dynamic traffic environments. These functions of random access and resource allocation are very important to prevent wastage of resources and improve MAC performance according to various network conditions. In this paper, we propose new random access and resource allocation schemes to guarantee quality of service (QoS) and provide priority services in a dynamic TDMA/TDD system. First, for the QoS guarantee, we propose an adaptive random access and resource allocation scheme by introducing an access probability. Second, for providing priority service, we propose a priority-based random access and resource allocation scheme by extending the first adaptive scheme in both a centralized and a distributed manner. The analysis and simulation results show that the proposed MAC protocol outperforms the legacy MAC protocol using a simple binary exponential backoff algorithm, and provides good differential performance according to priorities with respect to the throughput and delay.

Adaptive Radio Resource Allocation for a Mobile Packet Service in Multibeam Satellite Systems

  • Lim, Kwang-Jae;Kim, Soo-Young;Lee, Ho-Jin
    • ETRI Journal
    • /
    • v.27 no.1
    • /
    • pp.43-52
    • /
    • 2005
  • In this paper, we introduce an adaptive radio resource allocation for IP-based mobile satellite services. We also present a synchronous multibeam CDMA satellite system using an orthogonal resource sharing mechanism among downlink beams for the adaptive packet transmission. The simulation results, using a Ka-band mobile satellite channel and various packet scheduling schemes, show that the proposed system and resource allocation scheme improves the beam throughput by more than two times over conventional systems. The simulation results also show that, in multibeam satellite systems, a system-level adaptation to a user's channel and interference conditions according to user locations and current packet traffic is more efficient in terms of throughput improvement than a user-level adaptation.

  • PDF

An Adaptive Subcarrier Allocation Scheme based on Comparison of Group Opportunity Cost (부반송파 그룹간 기회 비용 상호 비교에 기반한 적응 부반송파 할당 기법)

  • Kim, Young-Ok;Yoon, Byung-Wan;Lee, Young-Tark
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.55-58
    • /
    • 2007
  • An adaptive subcarrier allocation scheme based on comparative superiority of opportunity cost between groups is proposed for the enhancement of system capacity and its simple implementation at the base station of a multiuser OFDM system. The proposed algorithm is similar to the blockwise or the decentralized subcarrier allocation algorithm proposed by Xiaowen et al and Alen et al, respectively. In the proposed algorithm, however, all subcarriers are grouped according to the coherence bandwidth and the comparative superiority concept, which swaps the groups between users if the system capacity is increased, is adopted for the enhancement of system capacity. In addition, the proposed algorithm provides a simple solution for the conflict problem among users by reallocating only the conflicted groups and unassigned groups instead of reallocating entire groups. Simulation results demonstrate that the proposed algorithm increases the system capacity effectively over a static, an adaptive blockwise, and a decentralized subcarrier allocation algorithms.

  • PDF

Adaptive OFDMA with Partial CSI for Downlink Underwater Acoustic Communications

  • Zhang, Yuzhi;Huang, Yi;Wan, Lei;Zhou, Shengli;Shen, Xiaohong;Wang, Haiyan
    • Journal of Communications and Networks
    • /
    • v.18 no.3
    • /
    • pp.387-396
    • /
    • 2016
  • Multiuser communication has been an important research area of underwater acoustic communications and networking. This paper studies the use of adaptive orthogonal frequency-division multiple access (OFDMA) in a downlink scenario, where a central node sends data to multiple distributed nodes simultaneously. In practical implementations, the instantaneous channel state information (CSI) cannot be perfectly known by the central node in time-varying underwater acoustic (UWA) channels, due to the long propagation delays resulting from the low sound speed. In this paper, we explore the CSI feedback for resource allocation. An adaptive power-bit loading algorithm is presented, which assigns subcarriers to different users and allocates power and bits to each subcarrier, aiming to minimize the bit error rate (BER) under power and throughput constraints. Simulation results show considerable performance gains due to adaptive subcarrier allocation and further improvement through power and bit loading, as compared to the non-adaptive interleave subcarrier allocation scheme. In a lake experiment, channel feedback reduction is implemented through subcarrier clustering and uniform quantization. Although the performance gains are not as large as expected, experiment results confirm that adaptive subcarrier allocation schemes based on delayed channel feedback or long term statistics outperform the interleave subcarrier allocation scheme.

An Efficient and Fast Bit Allocation Algorithm for Multiuser OFDM Systems (다중 사용자 OFDM 시스템을 위한 효율적이고 빠른 비트 배정 알고리즘)

  • Kim, Min-Suk;Lee, Chang-Wook;Jeon, Gi-Joon
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.218-220
    • /
    • 2004
  • Orthogonal frequency division multiplexing(OFDM) is one of the most promising technique for next generation wireless broadband communication systems. In this paper, we propose a new bit allocation algorithm in multiuser OFDM. The proposed algorithm is derived from the geometric progression of the additional transmit power of subcarriers and the arithmetic-geometric means inequality. The simulation shows that this algorithm has similar performance to the conventional adaptive bit allocation algorithm and lower computational complexity than the existing algorithms.

  • PDF

Optimal Bandwidth Allocation and QoS-adaptive Control Co-design for Networked Control Systems

  • Ji, Kun;Kim, Won-Jong
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.4
    • /
    • pp.596-606
    • /
    • 2008
  • In this paper, we present a co-design methodology of dynamic optimal network-bandwidth allocation (ONBA) and adaptive control for networked control systems (NCSs) to optimize overall control performance and reduce total network-bandwidth usage. The proposed dynamic co-design strategy integrates adaptive feedback control with real-time scheduling. As part of this co-design methodology, a "closed-loop" ONBA algorithm for NCSs with communication constraints is presented. Network-bandwidth is dynamically assigned to each control loop according to the quality of performance (QoP) information of each control loop. As another part of the co-design methodology, a network quality of service (QoS)-adaptive control design approach is also presented. The idea is based on calculating new control values with reference to the network QoS parameters such as time delays and packet losses measured online. Simulation results show that this co-design approach significantly improves overall control performance and utilizes less bandwidth compared to static strategies.

A Study on the Performance Analysis of Adaptive Modulation for Next Generation Mobile Communication System (차세대이동통신 시스템을 위한 적응변조방식의 성능 분석에 관한 연구)

  • Kang Heau-Jo;Sung Kil-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.6
    • /
    • pp.1241-1246
    • /
    • 2005
  • This paper proposes an adaptive multislot allocation algorithm in order to achieve larger system capacity and higher throughput data transmissions. The proposed system is the combination of the slow adaptive modulation system, in which the base station dynamically assigns optimum modulation parameters measuring the SNR of each transmission terminal, and the multislot allocation scheme, in which the base station flexibly allocates an appropriate number of TDMA data slots according to the instantaneous load conditions. Computer simulations confirm that the proposed system can tremendously improve average message delay characteristics in comparison with the conventional fixed slot allocation method.

Adaptive Power Allocation in Cooperative Relay Networks

  • Gao, Xiang;Park, Hyung-Kun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.795-798
    • /
    • 2007
  • In this paper, we proposed a simple power allocation scheme to maximize network lifetime. To maximize network lifetime, it is important to allocate power fairly among nodes in a network as well as to minimize total transmitted power. In the proposed scheme, the allocated power is proportional to the residual power and also satisfies the required SNR at destination node. In this paper, we calculate power allocation in "amplify and forward" (AF) model. We evaluated the proposed power allocation scheme using extensive simulation and simulation results show that proposed power allocation obtains much longer network lifetime than the equal power allocation.

  • PDF

Adaptive Partition-Based Address Allocation Protocol in Mobile Ad Hoc Networks

  • Kim, Ki-Il;Peng, Bai;Kim, Kyong-Hoon
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.2
    • /
    • pp.141-147
    • /
    • 2009
  • To initialize and maintain self-organizing networks such as mobile ad hoc networks, address allocation protocol is essentially required. However, centralized approaches that pervasively used in traditional networks are not recommended in this kind of networks since they cannot handle with mobility efficiently. In addition, previous distributed approaches suffer from inefficiency with control overhead caused by duplicated address detection and management of available address pool. In this paper, we propose a new dynamic address allocation scheme, which is based on adaptive partition. An available address is managed in distributed way by multiple agents and partitioned adaptively according to current network environments. Finally, simulation results reveal that a proposed scheme is superior to previous approach in term of address acquisition delay under diverse simulation scenarios.