• Title/Summary/Keyword: ad hoc sensor networks

Search Result 162, Processing Time 0.026 seconds

Experimental Design of AODV Routing Protocol with Maximum Life Time (최대 수명을 갖는 AODV 라우팅 프로토콜 실험 설계)

  • Kim, Yong-Gil;Moon, Kyung-Il
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.3
    • /
    • pp.29-45
    • /
    • 2017
  • Ad hoc sensor network is characterized by decentralized structure and ad hoc deployment. Sensor networks have all basic features of ad hoc network except different degrees such as lower mobility and more stringent energy requirements. Existing protocols provide different tradeoffs among some desirable characteristics such as fault tolerance, distributed computation, robustness, scalability and reliability. wireless protocols suggested so far are very limited, generally focusing on communication to a single base station or on aggregating sensor data. The main reason having such restrictions is due to maximum lifetime to maintain network activities. The network lifetime is an important design metric in ad hoc networks. Since every node does a router role, it is not possible for other nodes to communicate with each other if some nodes do not work due to energy lack. In this paper, we suggest an experimental ad-hoc on-demand distance vector routing protocol to optimize the communication of energy of the network nodes.The load distribution avoids the choice of exhausted nodes at the route selection phase, thus balances the use of energy among nodes and maximizing the network lifetime. In transmission control phase, there is a balance between the choice of a high transmission power that lead to increase in the range of signal transmission thus reducing the number of hops and lower power levels that reduces the interference on the expense of network connectivity.

An Energy Efficient Routing Protocol for Unicast in Wireless Sensor Networks (무선 센서 네트워크에서 유니캐스트를 위한 에너지 효율적인 라우팅 프로토콜)

  • Han, Uk-Pyo;Lee, Hee-Choon;Chung, Young-Jun
    • Journal of KIISE:Information Networking
    • /
    • v.34 no.4
    • /
    • pp.262-268
    • /
    • 2007
  • The efficient node-energy utilization in wireless sensor networks has been studied because sensor nodes operate with limited power based on battery. To extend the lifetime of the wireless sensor networks, maintaining balanced power consumption between sensor nodes is more important than reducing total energy consumption of the overall network. Since a large number of sensor nodes are densely deployed and collect data by cooperation in wireless sensor network, keeping more sensor nodes alive as possible is important to extend the lifetime of the sensor network. In this paper, we submit an efficient energy aware routing protocol based on AODV ad hoc routing protocol for wireless sensor networks to increase its lifetime without degrading network performance. The proposed protocol is designed to avoid traffic congestion on minor specific nodes at data transfer and to make the node power consumption be widely distributed to increase the lifetime of the network. The performance of the proposed protocol has been examined and evaluated with the NS-2 simulator in terms of network lifetime and end-to-end delay.

A Clustering Protocol with Mode Selection for Wireless Sensor Network

  • Kusdaryono, Aries;Lee, Kyung-Oh
    • Journal of Information Processing Systems
    • /
    • v.7 no.1
    • /
    • pp.29-42
    • /
    • 2011
  • Wireless sensor networks are composed of a large number of sensor nodes with limited energy resources. One critical issue in wireless sensor networks is how to gather sensed information in an energy efficient way, since their energy is limited. The clustering algorithm is a technique used to reduce energy consumption. It can improve the scalability and lifetime of wireless sensor networks. In this paper, we introduce a clustering protocol with mode selection (CPMS) for wireless sensor networks. Our scheme improves the performance of BCDCP (Base Station Controlled Dynamic Clustering Protocol) and BIDRP (Base Station Initiated Dynamic Routing Protocol) routing protocol. In CPMS, the base station constructs clusters and makes the head node with the highest residual energy send data to the base station. Furthermore, we can save the energy of head nodes by using the modes selection method. The simulation results show that CPMS achieves longer lifetime and more data message transmissions than current important clustering protocols in wireless sensor networks.

GEOP : A Security Aware Multipath Routing Protocol (GEOP : 보안 인식 다중경로 라우팅 프로토콜)

  • Kong, Hyung-Yun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.2
    • /
    • pp.151-157
    • /
    • 2010
  • Rapid technological advances in the area of micro electro-mechanical systems (MEMS) have spurred the development of small inexpensive sensors capable of intelligent sensing. A significant amount of research has been done in the area of connecting large numbers of these sensors to create robust and scalable Wireless Sensor Networks (WSNs). The resource scarcity, ad-hoc deployment, and immense scale of WSNs make secure communication a particularly challenging problem. Since the primary consideration for sensor networks is energy efficiency, security schemes must balance their security features against the communication and computational overhead required to implement them. In this paper, we combine location information and probability to create a new security aware multipath geographic routing protocol. The implemented result in network simulator (ns-2) showed that our protocol has a better performance under attacks.

Optimized Resource Allocation for Utility-Based Routing in Ad Hoc and Sensor Networks

  • Li, Yanjun;Shao, Jianji
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.5
    • /
    • pp.1790-1806
    • /
    • 2015
  • Utility-based routing is a special type of routing approach using a composite utility metric when making routing decisions in ad hoc and sensor networks. Previous studies on the utility-based routing all use fixed retry limit and a very simple distance related energy model, which makes the utility maximization less efficient and the implementation separated from practice. In this paper, we refine the basic utility model by capturing the correlation of the transmit power, the retry limit, the link reliability and the energy cost. A routing algorithm based on the refined utility model with adaptive transmit power and retry limit allocation is proposed. With this algorithm, packets with different priorities will automatically receive utility-optimal delivery. The design of this algorithm is based on the observation that for a given benefit, there exists a utility-maximum route with optimal transmit power and retry limit allocated to intermediate forwarding nodes. Delivery along the utility-optimal route makes a good balance between the energy cost and the reliability according to the value of the packets. Both centralized algorithm and distributed implementations are discussed. Simulations prove the satisfying performance of the proposed algorithm.

Design of an Efficient Power Manger through the cooperative Dynamic Power Management for Ad hoc Wireless Sensor Networks (Ad hoc 무선 센서네트워크에서의 효율 전력 매니지먼트에 관한 연구)

  • Jeon, Dong-Keun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.6
    • /
    • pp.809-814
    • /
    • 2011
  • The major resource problem in sensor networks is energy efficiency. There are two major access methods to efficiently use energy. The first is to use dynamic power management (DPM). The second is to use energy efficient protocols. In DPM methods, the OS, the power manager, is responsible for managing the proper power state of CPU and each I/O with respect to the events, but the OS is not largely concerned about the internal operation of each network protocols. Also, energy efficient protocols are mainly focused on the power saving operation of the radio PHY. In addition, in wireless sensor network most of tasks are connected to communication. In such a situation, traditional power managers can waste unpredicted power. In this paper, we introduce an efficient power manger that can reduce a lot of unwanted power consumption through cooperative power management (CPM) in communication-related tasks between each units, such as radio, sensing unit, and CPU, for ad hoc wireless sensor nodes.

A Study on the Context-Awareness Rule-Based Clustering technique for MANET (MANET에서 상황인식 규칙기반에 따른 에너지 보존 클러스터링 기법에 관한 연구)

  • Chi, Sam-Hyun;Lee, Kang-Whan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.4
    • /
    • pp.1041-1047
    • /
    • 2010
  • One of the weaknesses of ad hoc network is that a route used between a source and a destination is to break during communication. To solve this problem, one approach consists of selecting routes whose nodes have the most stable link cost. In this paper proposes a new method for improving the low power distributed MAC. The method is rule-based on the context awareness of the each nodes energy in clustering. The proposed networks scheme could get better improve the awareness for data to achieve and performance on their clustering establishment and messages transmission.

A Location Information-based Gradient Routing Algorithm for Wireless Ad Hoc Networks (무선 애드혹 네트워크를 위한 위치정보 기반 기울기 라우팅 알고리즘)

  • Bang, Min-Young;Lee, Bong-Hwan
    • The KIPS Transactions:PartC
    • /
    • v.17C no.3
    • /
    • pp.259-270
    • /
    • 2010
  • In this paper, a Location Information-based Gradient Routing (LIGR) algorithm is proposed for setting up routing path based on physical location information of sensor nodes in wireless ad-hoc networks. LIGR algorithm reduces the unnecessary data transmission time, route search time, and propagation delay time of packet by determining the transmission direction and search range through the gradient from the source node to sink node using the physical location information. In addition, the low battery nodes are supposed to have the second or third priority in case of forwarding node selection, which reduces the possibility of selecting the low battery nodes. As a result, the low battery node functions as host node rather than router in the wireless sensor networks. The LIGR protocol performed better than the Logical Grid Routing (LGR) protocol in the average receiving rate, delay time, the average residual energy, and the network processing ratio.

An Energy Balancing Low Power Routing Method for Sensor Network with Fixed Data Acquisition Nodes (고정식 정보획득 노드로 구성된 센서 네트워크에 적용 가능한 에너지 밸런싱 저전력 라우팅 기법)

  • Jeong Gye-Gab;Kim Hwang-Gi;Lee Nam-Il;Kim Jun-Nyun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.6 s.324
    • /
    • pp.59-68
    • /
    • 2004
  • Thanks to the development of microelectromechanical systems(MEMS), wireless communication technology and microsensor technology, it was Possible to manufacture a very small and low costdata acquisition node with sensing function, processing function, wireless communication function and battery. Thus sensor networks begin to be prevailed. The sensor network is a spontaneous system which sets up automatically routing paths and transmits asignificant data to the destination. Sensor nodes requires low-power operation because most of them use a battery as operating power. Sensor nodes transmit a sensing data to the destination. Moreover, they play a router. In fact, because the later consumes more energy than the former, the low-power routing is very important. Sensor networks don't have a routing standard unlike general wireless Ad-hoc networks. So This paper proposes a low-power routing method for anting to sensor networks. It is based on AODV and adapts a method to drop probably RREQ depending on remaining power. We examined it through simulations. From simulation results, we could confirm to reduce power consumption about $10-20\%$ and distribute equally power consumption among nodes.

Adaptive Medium Access Control protocol for low-power wireless sensor network (저전력 무선 센서 네트워크를 위한 적응적 MAC 프로토콜)

  • Kang, Jeong-Hoon;Lee, Min-Goo;Yoon, Myung-Hyun;Yoo, Jun-Jae
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.209-211
    • /
    • 2005
  • This paper proposes a adaptive medium-access control(MAC) protocol designed for low-power wireless multi-hop sensor networks which is used for connecting physical world and cyber computing space. Wireless multi-hop sensor networks use battery-operated computing and sensing device. We expect sensor networks to be deployed in an ad hoc fashion, with nodes remaining inactive for long time, but becoming suddenly active when specific event is detected. These characteristics of multi-hop sensor networks and applications motivate a MAC that is different from traditional wireless MACs about power conservation scheme, such as IEEE 802.11. Proposed MAC uses a few techniques to reduce energy consumption. Result show that proposed MAC obtains more energy savings.

  • PDF