• Title/Summary/Keyword: acute renal injury

Search Result 146, Processing Time 0.029 seconds

Treatment of Acute Renal Failure in Neonate (신생아 급성 신부전의 치료)

  • Lee, Jin-A
    • Neonatal Medicine
    • /
    • v.17 no.2
    • /
    • pp.168-180
    • /
    • 2010
  • Acute renal failure (ARF) is common in the neonatal period, however, there are no uniform treatment strategies of ARF. The main treatment strategies are conservative management including medical treatment and the renal replacement therapy. Because ARF in the newborn is commonly acquired by hypoxic ischemic injury and toxic insults, removal of all the offending causes is important. Aminoglycoside, indomethacin, and amphotericin-B are the most common nephrotoxic drugs of ARF. To relieve the possible prerenal ARF, initial fluid challenge can be followed by diuretics. If there is no response, fluid restriction and correction of electrolyte imbalance should begin. Adequate nutritional support and drug dosing according to the pharmacokinetics of such drugs will be difficult problems. Renal replacement therapies may be provided by peritoneal dialysis, intermittent hemodialysis, or hemofiltration. New promising agents, bioartificial kidney, and stem cell will enable us to extend our therapeutic repertoire.

Effects of Albizia julibrissin Durazz through Suppression of Mitochondrial Fission and Apoptosis in Cisplatin-induced Acute Kidney Injury

  • Hui-Ju Lee;Kyung-Hyun Kim;Yae-Ji Kim;Sung-Pil Cho;Geum-Lan Hong;Ju-Young Jung
    • Natural Product Sciences
    • /
    • v.28 no.4
    • /
    • pp.194-200
    • /
    • 2022
  • Albizia julibrissin Durazz. (AJ; family Minosaceae) is widely distributed worldwide, and its stem bark has been used as a traditional herbal medicine. Acute kidney injury (AKI) is a clinical syndrome that results in sudden loss of renal function. This study aimed to investigate the effects of AJ against cisplatin-induced AKI using a human kidney proximal tubule epithelial cell line (HK-2) and cisplatin-treated mice. In vitro, cisplatin treatment increased apoptosis in HK-2 cells. However, AJ treatment decreased apoptosis of cisplatin-treated HK-2 cells. In vivo, cisplatin treatment accelerated renal injury by increasing the levels of renal injury markers, such as blood urea nitrogen, creatinine, kidney injury molecule 1, and neutrophil gelatinase-associated lipocalin, which were reversed by AJ treatment. Histopathologically, AJ treatment resulted in decreased renal damage with less tubular necrosis and brush border desquamation compared with the AKI group. Additionally, cisplatin treatment upregulated mitochondrial fission, a pathological characteristic of AKI, which was downregulated by AJ treatment. Along with increased mitochondrial fission, AJ treatment also reduced cisplatin-induced apoptosis. These results suggest that AJ may be a potential therapeutic agent for cisplatin-induced AKI.

Changes of Kidney Injury Molecule-1 Expression and Renal Allograft Function in Protocol and for Cause Renal Allograft Biopsy (이식신 계획생검 및 재생검에서 Kidney Injury Molecule-1 표현과 이식신 기능 변화)

  • Kim, Yonhee;Lee, A-Lan;Kim, Myoung Soo;Joo, Dong Jin;Kim, Beom Seok;Huh, Kyu Ha;Kim, Soon Il;Kim, Yu Seun;Jeong, Hyeon Joo
    • Korean Journal of Transplantation
    • /
    • v.28 no.3
    • /
    • pp.135-143
    • /
    • 2014
  • Background: Kidney injury molecule-1 (KIM-1) is known as a good ancillary marker of acute kidney injury (AKI) and its expression has also been observed in acute rejection and chronic graft dysfunction. We tested usefulness of KIM-1 as an indicator of acute and chronic renal graft injury by correlating KIM-1 expression with renal graft function and histology. Methods: A total of 133 zero-time biopsies and 42 follow-up biopsies obtained within 1 year posttransplantation were selected. Renal tubular KIM-1 staining was graded semiquantitatively from 0 to 3 and the extent of staining was expressed as the ratio of KIM-1 positive/CD10 positive proximal tubules using Image J program. Results: KIM-1 was positive in 39.8% of zero-time biopsies. KIM-1 positive cases were predominantly male and had received grafts from donors with older age, deceased donors, and poor renal function at the time of donation, compared with KIM-1 negative cases. KIM-1 expression showed correlation with delayed graft function and acute tubular necrosis. In comparison of KIM-1 expression between stable grafts (n=23) and grafts with dysfunction (n=19) at the time of repeated biopsy, the intensity/extent of KIM-1 staining and renal histology at zero-time did not differ significantly between the two groups. Histologically, KIM-1 expression was significantly increased with both acute and chronic changes of glomeruli, tubules and interstitium, peritubular capillaritis, and arteriolar hyalinosis. Conclusions: KIM-1 can be used as an ancillary marker of AKI and a nonspecific indicator of acute inflammation and tubulointerstitial fibrosis. However, KIM-1 expression at zero-time is not suitable for prediction of long-term graft dysfunction.

Beneficial Effect of Pentoxifylline on Hypoxia-Induced Cell Injury in Renal Proximal Tubular Cells

  • Jung Soon-Hee
    • Biomedical Science Letters
    • /
    • v.10 no.4
    • /
    • pp.341-346
    • /
    • 2004
  • Tumor necrosis factor-α (TNF-α) or its mRNA expression are increased in acute nephrosis of various types including ischemia/reperfusion injury. This study was undertaken to determine whether pentoxifylline (PTX), an inhibitor of TNF-α production, provides a protective effect against hypoxia-induced cell injury in rabbit renal cortical slices. To induce hypoxia-induced cell injury, renal cortical slices were exposed to 100% N₂ atmosphere. Control slices were exposed to 100% O₂ atmosphere. The cell injury was estimated by measuring lactate dehydrogenase (LDH) release and p-aminohippurate (PAH) uptake. Exposure of slices to hypoxia increased the LDH release in a time-dependent manner. However, when slices were exposed to hypoxia in the presence of PTX, the LDH release was decreased. The protective effect of PTX was dose-dependent over the concentrations of 0.05∼1 mM. Hypoxia did not increase lipid peroxidation, whereas an organic hydroperoxide t-butylhydroperoxide (tBHP) resulted in a significant increase in lipid peroxidation. PTX did not affect tBHP-induced lipid peroxidation. Hypoxia decreased PAH uptake, which was significantly attenuated by PTX and glycine. tBHP-induced inhibition of PAH uptake was not altered by PTX, although it was prevented by antioxidant deferoxarnine. The PAH uptake by slices in rabbits with ischemic acute renal failure was prevented by PTX pretreatment. These results suggest that PTX may exert a protective effect against hypoxia-induced cell injury and its effect may due to inhibition of the TNF-α production, but not by its antioxidant action.

  • PDF

Acute decompensated heart failure and acute kidney injury due to bilateral renal artery stenosis (양측성 신동맥 협착증에서 발생한 급성 비대상성 심부전과 급성 신손상)

  • Jung, Ho Jin;Choi, Won Suk;Kang, Hyun Jae;Jung, Byung Chun;Lee, Bong Ryeol;Lee, Jong Joo;Lee, Jun-Young
    • Journal of Yeungnam Medical Science
    • /
    • v.32 no.2
    • /
    • pp.146-151
    • /
    • 2015
  • Atherosclerotic renal artery stenosis (RAS) may result in hypertension, azotemia, and acute pulmonary edema. We report on a renal angioplasty with stent placement for bilateral RAS in a patient with acute decompensated heart failure and acute kidney injury. A 67-year-old female patient was admitted to our hospital with acute shortness of breath and generalized edema. Echocardiography showed left ventricular wall motion abnormality and the follow up electrocardiography showed T wave inversion in the precordial leads. We performed a coronary angiography to differentiate ischemic heart disease from non-cardiac origin for the cause of the heart failure. The coronary angiography showed no significant luminal narrowing, but bilateral RAS was confirmed on the renal artery angiography, therefore, we performed renal artery revascularization. After the procedure, the pulmonary edema was improved and the serum creatinine was decreased. Two weeks later, an echocardiography showed improvement of the left ventricular systolic function.

A Case of Renal Cortical Necrosis in a 15-year-old Boy with Acute Kidney Injury

  • Lee, Mi-ji;Yim, Hyung Eun;Yoo, Kee Hwan
    • Childhood Kidney Diseases
    • /
    • v.23 no.1
    • /
    • pp.53-57
    • /
    • 2019
  • Renal cortical necrosis (RCN) is patchy or diffuse ischemic destruction of the renal cortex caused by significantly reduced renal arterial perfusion. It is a rare cause of acute kidney injury (AKI) and is associated with high mortality. Here, we review the case of RCN in a 15-year-old boy who developed AKI. A 15-year-old boy was referred to our hospital from a local hospital due to a sharp decrease in his renal function. He presented with acute flank pain, nausea with vomiting, and oliguria for the past two days. He had taken a single dose of antihistamine for nasal congestion. At our hospital, his peak blood pressure was 148/83 mmHg and he had a high body mass index of $32.9kg/m^2$. The laboratory data showed a blood urea nitrogen (BUN) of 28.4 mg/dL, a creatinine of 4.26 mg/dL, and a glomerular filtration rate estimated from the serum cystatin C of $20.2mL/min/1.73m^2$. Proteinuria (spot urine protein to creatinine ratio 1.66) with pyuria was observed. Kidney sonography showed parenchymal swelling and increased renal echogenicity. Due to rapidly progressing nephritis, steroid pulse therapy (750 mg/IV) was done on the second day of his admission and the patient showed complete recovery with normal renal function. However, the kidney biopsy findings revealed renal cortical hemorrhagic necrosis. Multifocal, relatively well-circumscribed, hemorrhagic necrotic areas (about 25%) were detected in the tubulointerstitium. Although RCN is an unusual cause of AKI, especially in children, pediatricians should consider the possibility of RCN when evaluating patients with rapidly decreasing renal function.

Mitochondrial fatty acid metabolism in acute kidney injury

  • Jang, Hee-Seong;Padanilam, Babu J.
    • Journal of Medicine and Life Science
    • /
    • v.15 no.2
    • /
    • pp.37-41
    • /
    • 2018
  • Mitochondrial injury in renal tubule has been recognized as a major contributor in acute kidney injury (AKI) pathogenesis. Ischemic insult, nephrotoxin, endotoxin and contrast medium destroy mitochondrial structure and function as well as their biogenesis and dynamics, especially in renal proximal tubule, to elicit ATP depletion. Mitochondrial fatty acid ${\beta}$-oxidation (FAO) is the preferred source of ATP in the kidney, and its impairment is a critical factor in AKI pathogenesis. This review explores current knowledge of mitochondrial dysfunction and energy depletion in AKI and prospective views on developing therapeutic strategies targeting mitochondrial dysfunction in AKI.

Protective effects of lutein against vancomycin-induced acute renal injury in mice via upregulation of peroxisome proliferator-activated receptor gamma/nuclear factor erythroid 2-related factor 2 and inhibition nuclear factor-kappaB/caspase 3

  • Emeka, Promise M.;Rasool, Sahibzada T.;Morsy, Mohamed A.;Islam, Mohamed I. Hairul;Chohan, Muhammad S.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.4
    • /
    • pp.321-331
    • /
    • 2021
  • Vancomycin, an antibiotic used occasionally as a last line of treatment for methicillin-resistant Staphylococcus aureus, is reportedly associated with nephrotoxicity. This study aimed at evaluating the protective effects of lutein against vancomycin-induced acute renal injury. Peroxisome proliferator-activated receptor gamma (PPARγ) and its associated role in renoprotection by lutein was also examined. Male BALB/c mice were divided into six treatment groups: control with normal saline, lutein (200 mg/kg), vancomycin (250 mg/kg), vancomycin (500 mg/kg), vancomycin (250 mg/kg) with lutein, and vancomycin (500 mg/kg) with lutein groups; they were euthanized after 7 days of treatment. Thereafter, samples of blood, urine, and kidney tissue of the mice were analyzed, followed by the determination of levels of N-acetyl-β-D-glucosaminidase (NAG) in the urine, renal creatine kinase; protein carbonyl, malondialdehyde, and caspase-3 in the kidney; and the expression of PPARγ, nuclear factor erythroid 2-related factor 2 (Nrf2), and nuclear factor-kappaB (NF-κB) in renal tissue. Results showed that the levels of protein carbonyl and malondialdehyde, and the activity of NAG, creatine kinase and caspase-3, were significantly increased in the vancomycin-treatment groups. Moreover, the levels of Nrf2 significantly decreased, while NF-κB expression increased. Lutein ameliorated these effects, and significantly increased PPARγ expression. Furthermore, it attenuated vancomycin-induced histological alterations such as, tissue necrosis and hypertrophy. Therefore, we conclude that lutein protects against vancomycin-induced renal injury by potentially upregulating PPARγ/Nrf2 expression in the renal tissues, and consequently downregulating the pathways: inflammation by NF-κB and apoptosis by caspase-3.

A Case of Acute Renal Failure Associated with Non-fulminant Acute Hepatitis A (비전격성 급성 A형 간염 환자에서의 급성 신부전의 병발 1예)

  • Na, Ji-Hoon;Park, Jong-Won;Park, Kyu-Hwan;Oh, Myong-Jin;Choi, Yun-Jung;Park, Jung-Min;Chang, Woo-Jin
    • Journal of Yeungnam Medical Science
    • /
    • v.27 no.2
    • /
    • pp.127-132
    • /
    • 2010
  • Acute hepatitis A is a generally self-limiting disease of the liver. Acute renal failure is rare in patients with acute non-fulminant hepatitis A Acute tubular necrosis is the most common form of renal injury found in such patients. The 215 years old male patient visited our hospital with complaint of general weakness, fatigue, nausea, vomiting and myalgia. He was diagnosed with acute renal failure associated with acute non-fulminant hepatitis A We report here on a case of acute renal failure associated with non-fulminant hepatitis A, and we include a review of the literature.

  • PDF

Protective effect of ginsenosides Rk3 and Rh4 on cisplatin-induced acute kidney injury in vitro and in vivo

  • Baek, Seung-Hoon;Shin, Byong-kyu;Kim, Nam Jae;Chang, Sun-Young;Park, Jeong Hill
    • Journal of Ginseng Research
    • /
    • v.41 no.3
    • /
    • pp.233-239
    • /
    • 2017
  • Background: Nephrotoxicity is the major side effect in cisplatin chemotherapy. Previously, we reported that the ginsenosides Rk3 and Rh4 reduced cisplatin toxicity on porcine renal proximal epithelial tubular cells (LLC-PK1). Here, we aimed to evaluate the protective effect of ginsenosides Rk3 and Rh4 on kidney function and elucidate their antioxidant effect using in vitro and in vivo models of cisplatin-induced acute renal failure. Methods: An enriched mixture of ginsenosides Rk3 and Rh4 (KG-KH; 49.3% and 43.1%, respectively) was purified from sun ginseng (heat processed Panax ginseng). Cytotoxicity was induced by treatment of $20{\mu}M$ cisplatin to LLC-PK1 cells and rat model of acute renal failure was generated by single intraperitoneal injection of 5 mg/kg cisplatin. Protective effects were assessed by determining cell viability, reactive oxygen species generation, blood urea nitrogen, serum creatinine, antioxidant enzyme activity, and histopathological examination. Results: The in vitro assay demonstrated that KG-KH ($50{\mu}g/mL$) significantly increased cell viability (4.6-fold), superoxide dismutase activity (2.8-fold), and glutathione reductase activity (1.5-fold), but reduced reactive oxygen species generation (56%) compared to cisplatin control cells. KG-KH (6 mg/kg, per os) also significantly inhibited renal edema (87% kidney index) and dysfunction (71.4% blood urea nitrogen, 67.4% creatinine) compared to cisplatin control rats. Of note, KG-KH significantly recovered the kidney levels of catalase (1.2-fold) and superoxide dismutase (1.5-fold). Conclusion: Considering the oxidative injury as an early trigger of cisplatin nephrotoxicity, our findings suggest that ginsenosides Rk3 and Rh4 protect the kidney from cisplatin-induced oxidative injury and help to recover renal function by restoring intrinsic antioxidant defenses.