• Title/Summary/Keyword: actuator design

Search Result 1,467, Processing Time 0.029 seconds

Laver(Kim) Thickness Measurement and Control System Design (해태(김)두께측정 및 조절 장치 설계)

  • Lee, Bae-Kyu;Choi, Young-Il;Kim, Jung-Hwa
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.11
    • /
    • pp.226-233
    • /
    • 2013
  • In this study, In Laver's automatic drying device, laver thickness measurement and control devices that are associated with. Disconnect the water and steam, after put a certain amount of the mixture(water and laver) in the mold. In process, Laver of the size and thickness (weight) to determine, constant light source to detect and image LED Lamp occur Vision Sensor (Camera) prepare, then the values of these state of the image is transmitted in real time embedded computers. Built-in measurement and control with the purpose of the application of each of the channels separately provided measurements are displayed on a monitor, And servo signals sent to each of the channels and it become so set function should be. In this paper, the laver drying device, prior to the laver thickness measurement and control devices that rely on the experience of existing workers directly laver manually adjust the thickness of the lever, but the lever by each channel relative to the actuator by installing was to improve the quality. In addition, The effect of productivity gains and labor savings are.

Development and Application of a Turtle Ship Model Based on Physical Computing Platform for Students of Industrial Specialized High School (공업계 특성화고 학생을 위한 피지컬 컴퓨팅 플랫폼 기반의 모형 거북선 개발 및 적용)

  • Kim, Won-Woong;Choi, Jun-Seop
    • 대한공업교육학회지
    • /
    • v.41 no.2
    • /
    • pp.89-118
    • /
    • 2016
  • In this study, the model of Turtle Ship, which is evaluated as one of the world's first ironclad ship in battle as well as the traditional scientific and technological heritage in Korea, was combined with the Physical Computing Platform(Arduino and App Inventor) that enables students to learn the basic concepts of IT in an easy and fun way. Thus, this study contrived the Physical Computing Platform-based Turtle Ship model which will make the students of Industrial Specialized High School develop the technological literacy and humanities-based knowledge through flexible education out of stereotype and single subject as well as enhance the potential of creative convergence education. The following is a summary of the main results obtained through this study: First, Arduino-based Main-controller design and making is helpful to learn of the hardware and software knowledge about EEC(Electron Electronics Control) and to confirm the basic characteristics and performance of interaction of Arduino and actuators. Second, The fundamental Instructional environments of abilities such as implementing EEC systems, thinking logically, and problem-solving skills were provided by designing of pattern diagram, designing an actuator circuit and making, the creation of sketches as technical programming and developing of mobile app. Thirdly, This is physical computing platform based Turtle ship model that will enable students to bring up their technological literacy and interest in the cultural heritage.

Enhancement of SNUF Active Trailing-edge Flap Blade Mechanism Design (SNUF뒷전 플랩 블레이드 메커니즘의 설계 개선)

  • Natarajan, Balakumaran;Eun, WonJong;Shin, SangJoon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.7
    • /
    • pp.645-653
    • /
    • 2013
  • Seoul National University flap(SNUF) blade is a small-scale rotor blade incorporating a small trailing-edge flap control surface driven by piezoelectric actuators at higher harmonics for vibration attenuation. Initially, the blade was designed using two-dimensional cross-section analysis and geometrically exact one-dimensional beam analysis, and its material configuration was finalized. A flap-deflection angle of ${\pm}4^{\circ}$ was established as the criterion for enhanced vibration reduction based on an earlier simulation. The flap-linkage mechanism was designed and static bench tests were conducted for verifying the performance of the flap-actuation mechanism. Different versions of test beds were developed and tested with the designed flap and the selected APA 200M piezoelectric actuators. Through significant improvements, a maximum deflection of ${\pm}3.7^{\circ}$ was achieved. High-frequency experiments were conducted for evaluating the performance, and the transfer function of the test bed was determined experimentally. With the static tests almost complete, the rotor power required for testing the blade in a whirl tower (centrifugal environment) was calculated, and further preparations are underway.

The 33-mode Dielectric and Piezoelectric Properties of PIN-PMN-PT Single Crystal under Stress and Electric Field (압축하중 및 전계 인가에 따른 PIN-PMN-PT 단결정의 33-모드 유전 및 압전특성)

  • Lim, Jae Gwang;Park, Jae Hwan;Lee, Jeongho;Lee, Sang Goo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.4
    • /
    • pp.91-96
    • /
    • 2020
  • The 33-mode dielectric and piezoelectric properties of Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 piezoelectric single crystals were measured under large electric field and compressive stress. The phase transition from the low temperature rhombohedral to the high temperature tetragonal structure was observed in the range of 110~140℃, and the Curie temperature changing to the cubic structure was about 165℃. The polarization change according to the compressive stress and electric field was measured. Relative dielectric constant was calculated from the slope of the polarization curve applied to the electric field, and the calculated relative dielectric constant increased as the applied stress increased, and the relative dielectric constant decreased as the applied electric field increased. The strain according to the compressive stress and electric field change was measured, the piezoelectric constant was calculated from the slope of the curve, and the phase transition according to the application of pressure was confirmed. In the case of practical application as an underwater or medical ultrasonic actuator, it is necessary to properly design the magnitude of the compressive stress applied to the device and the DC bias in order to maintain linear driving.

A Study on Automatic Solar Tracking Design of Rooftop Solar Power Generation System and Linkage with Education Curriculum (지붕 설치형 태양광 발전 시스템의 태양 위치 추적 구조물 설계 및 설치 실증 기법의 교육과정 연계)

  • Woo, Deok Gun;Seo, Choon Won;Lee, Hyo-Jai
    • Journal of Practical Engineering Education
    • /
    • v.14 no.2
    • /
    • pp.387-392
    • /
    • 2022
  • To participate in global carbon neutrality, the Korean government is also planning to carry out zero-energy building certification for all buildings by 2030 through the enforcement decree of the 'Green Building Support Act'. Accordingly, the government is providing various projects related to solar power generation, which are relatively close to life. In particular, roof-mounted photovoltaic power generation systems are attracting attention in terms of using unused space to produce energy without destroying the environment, but low power generation efficiency compared to other photovoltaic power generation facilities is pointed out as a disadvantage. Therefore, in this paper, to solve this problem, we propose an efficient solar panel angle variable system through research on the solar panel structure for single-axial solar tracking, and also consider the application environment of the roof-mounted solar power generation system. Suggests measures to prevent damage and secondary damage. In addition, it is judged that it is possible to control the solar panel based on ICT convergence and configure the accident prediction safety system to link the project-based education program.

A Design of Greenhouse Control Algorithm with the Multiple-Phase Processing Scheme (다중 위상 처리구조를 갖는 온실 복합환경제어 알고리즘 설계)

  • Daewook Bang
    • Journal of Service Research and Studies
    • /
    • v.11 no.2
    • /
    • pp.118-130
    • /
    • 2021
  • This study designs and validates a greenhouse complex environmental control algorithm with a multi-phase processing scheme that can combine and control actuators according to the degree of change in the greenhouse environment. The composite environmental control system is a system in which the complex environmental controller analyzes the information detected by sensors and operates appropriately actuators to maintain the crop growth environment. A composite environmental controller directs control devices driving actuators through a composite environmental control algorithm, which calculates the values necessary for the operation of the control devices. Most existing algorithms carry out control procedures on a single phase by iteration cycle, which can cause abnormal changes in the greenhouse environment due to errors in output. The proposed algorithm distributes control procedures over multiple phases: environmental control, environmental control, and device operation, and every iteration cycle, detects environmental changes in the environmental control phase first, and then combines control devices that can control the environment in the environmental control phase, and finally, performs the controls to derive the actuators in the device operation phase. The proposed algorithm is designed based on the analysis of the relationship between greenhouse environmental elements and control devices deriving actuators. According to verification analysis, the multi-phase processing scheme provides room to modify or supplement the setting value and enables the control devices to reflect changes in the associated environmental components.

Survey of ICT Apply to Plastic Greenhouse, Rack·Pinion Adaption to Single Span and CFD Analysis (온실 ICT융복합 실태조사와 복숭아형 랙피니언천창 적용 단동온실 및 CFD 유동해석)

  • Cho, Kyu Jeong;Kim, Ki Young;Yang, Won Mo
    • Journal of Bio-Environment Control
    • /
    • v.24 no.4
    • /
    • pp.308-316
    • /
    • 2015
  • This study was conducted to investigate the situation of ICT apply to plastic greenhouse, and the results be apply to design of new one. A CFD analysis were conducted to monitering the ventilation and energy saving of the single span greenhouse newly designed. The causes of delay to apply ICT to plastic greenhouse are the high cost for installation(24%), insufficiency of after services(19%), often disorder(16%), unskillful management of soft ware(15%), insufficient ICT efficiency(13%) and unsatisfying of income increase(12%). The parts of problem occurred in ICT plastic greenhouse are the structure, actuator, environmental control system and sensor(approximate 14%, respectively), remote control technique(13%), plant management technique(12%), energy saving technique(10%) and utilization of software(8%). In the condition of lateral window closed, the average wind speed changed to slow, but it was faster in the condition of leeward side window opened than in the condition of lee and winward side window opened. The air movement in the condition of lateral window closed occur by air moving fan not by out air. It is not affect the room temperature but effective the uniformity of room temperature. The average temperature of low height greenhouse was uniform than high height one. The average temperature in condition of 3rd curtain opened become same with outside temperature after 2 hours, but take more 5 hours in condition of 3rd curtain closed.