• Title/Summary/Keyword: actuation system

Search Result 336, Processing Time 0.031 seconds

Nonlinear analysis of a pneumatic actuation system by digital simulation (전산모사에 의한 공압구동장치의 비선형 해석)

  • 조택동;신효필;문의준
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.1104-1109
    • /
    • 1991
  • Recently, Pneumatic Actuation System (PAS) has been used increasingly as a high performance fin-control servo actuation systems because of the special advantages of pneumatic units: primarily their low cost, small size, light weight, and tolerance to broad temperature extremes. In this study, a nonlinear model of PAS is derived through the detailed analysis of the major components in the typical system. The model includes nonlinear flow-pressure relationships of the flow through the solenoid valve openings and orifices, PWM algorithm for driving two solenoid valves as a closed-center 3-way valve for minimum gas consumption, solenoid valve dynamics, saturation, and friction. Simulation results are compared with the experimental ones for square and sinusoidal inputs to see the validity of the model. Independent of the shape and magnitude of the input signals, both results are in good agreements with minor difference.

  • PDF

A sliding mode control of an electro-mechanical fin actuation system using extended reducer-observer(ERO) (확장형 감소차수 관측기를 이용한 전기식 조종날개 구동장치의 슬라이딩 모드 제어)

  • Gu, Jeong-Hoi
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.8 no.3 s.22
    • /
    • pp.92-100
    • /
    • 2005
  • The objective of this paper is to design a sliding mode controller of an electro-mechanical fin actuation system using extended reducer-observer(ERO) which is used in order to estimate the velocity. The employed observer enables proper estimation of the plant state variables, even in the case of the constant or slow varying load torque disturbances. The effectiveness of this control scheme is verified by comparison with a PID control through a series of simulation studies. The simulation results show that the sliding mode control designed with the ERO gives good control performances.

Fluid-Structure Interaction Analysis of SEMAS for Boeing 787 (Boeing 787용 SEMAS의 유체-구조 연계해석에 관한 연구)

  • Noh, Kyung-Ho;Kim, Jin-Ho;Byun, Yung-Hwan;Lee, Sung-Taick;Lee, Jae-Woo
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.14 no.3
    • /
    • pp.23-29
    • /
    • 2006
  • SEMAS(Smart Electro-Mechanical Actuation System), which enhances the flight performance and interior comforts of the airplane is selected as the prime actuation device for the Boeing 787 Environmental Control System. In the present study, fluid-structure interaction analysis process that simultaneously considers interaction by structural deformation and the fluid dynamics has been established. The integrated analysis shows there is slight structure-deformation which causes no severe interference among the structural components.

  • PDF

Hot Firing Test of a Quadrature NEA SSD9103S1 Configuration

  • Ja-Chun, Koo;Hee-Sung, Park;Max, Guba
    • International Journal of Aerospace System Engineering
    • /
    • v.9 no.2
    • /
    • pp.1-9
    • /
    • 2022
  • The NEA release mechanism is used to provide restraint and release functions with low shock for critical deployment operations on solar arrays after launch. The GK3 solar array consists of 2 wings and 6 hold down points per panel. The NEA SSD9103S1 is a part of the GK3 solar array hold-down and release mechanism. Each NEA unit is equipped with two Z-diodes which provide power to a NEA unit connected in series after actuation of the fuse wire. This paper presents the hot firing test results of a quadrature NEA SSD9103S1 configuration. One output powers a maximum of 4 NEA SSD9103S1 units simultaneously. The necessary actuation pulse duration has been determined to meet margin requirement for thermal energy of minimum 4. Actuation thermal energy difference is about 6.6% between each half of two fired serial NEAs. Thermal energy margin at worst case is minimum 5.9 in case of an actuation pulse duration of 500 ms. Two series Zener impedance depend on current applied has been characterized by an additional actuation after all fuse wires are open circuit. Total number of actuation commands to the GK3 NEA unit reduce drastically from 24 in case of single NEA configuration down to 8 in case of parallel and quadrature NEA configurations. It can be accommodated by the existing HP2U Pyro design without any impact.

Effect of Vibration on Twisted String Actuation Inside Conduit at High Curvature Angles (높은 곡률 각을 가지는 도관 내부의 줄 꼬임 구동에 대한 진동 효과)

  • Lee, Donghyee;Gaponov, Igor;Ryu, Jee-Hwan
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.3
    • /
    • pp.221-227
    • /
    • 2019
  • This paper studies an effect of vibration on twisted string actuation inside conduit at high curvature angles. In our previous work. we have mentioned that twisted string actuators can be used to transmit power even at significant curvature angles of the conduit. However, several undesirable effects, namely pull-back, hysteresis, and chattering, were present during actuation due to friction between strings and the internal sheath of the conduit. This paper reports the results of experimental study on effects of vibration on twisted string actuation inside curved conduits. We have demonstrated that applying vibration generated near natural frequency of the system during the stages of twisting and untwisting cycles helped reduce pull-back and hysteresis and increase string contraction. In case when sheath was deflected by $180^{\circ}$ under a constant load of 3 kg, we were able to achieve over 40% decrease in pull-back and 30% decrease in hysteresis, compared with no vibration case.

Model Estimation and Precise Position Control of an Antagonistic Actuation with Pneumatic Artificial Muscles (공압형 인공근육을 이용한 상극 구동의 모델 추정 및 정밀 위치제어)

  • Kang, Bong-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.5
    • /
    • pp.533-541
    • /
    • 2011
  • This paper presents a frequency-response test performed on an antagonistic actuation system consisting of two Mckibben pneumatic artificial muscles and a pneumatic circuit with pressure valves. Varying switching frequency to pressure valves from 0.1 Hz to 5 Hz, parameters of a linear model were estimated optimally to predict dynamic characteristics of the antagonistic actuation. A model-base control scheme with estimated parameters was built for the precise trajectory tracking of the antagonistic structure and realized on a reconfigurable embedded control system, CompactRIO. Experimental results showed that the proposed model-based control scheme gave good performance in trajectory tracking comparing with a PD control scheme when square wave and sinusoidal wave were given as references to follow.

Programmable Magnetic Actuation of Biomolecule Carriers using NiFe Stepping Stones

  • Lim, Byung-Hwa;Jeong, Il-Gyo;Anandakumar, S.;Kim, K.W.;Kim, Cheol-Gi
    • Journal of Magnetics
    • /
    • v.16 no.4
    • /
    • pp.363-367
    • /
    • 2011
  • We have designed, fabricated and demonstrated a novel micro-system for programmable magnetic actuation using magnetic elliptical pathways on Si substrates. Lithographically patterned soft NiFe ellipses are arranged sequentially perpendicular to each other as stepping stones for the transport of magnetic beads. We have measured the magnetization curve of the ellipsoid ($9\;{\mu}m{\times}4\;{\mu}m{\times}0.1\;{\mu}m$) elements with respect to the long and short axes of the ellipse. We found that the magnetization in the long axis direction is larger than that in the short axis direction for an applied field of ${\leq}$ 1,000 Oe, causing a force on carriers that causes them to move from one element to another. We have successfully demonstrated a micro-system for the magnetic actuation of biomolecule carriers of superparamagnetic beads (Dynabead$^{(R)}$ 2.8 ${\mu}m$) by rotating the external magnetic field. This novel concept of magnetic actuation is useful for future integrated lab-on-a-chip systems for biomolecule manipulation, separation and analysis.

Valve actuation effects on discrete monopropellant slug delivery in a micro-scale fuel injection system

  • McDevitt, M. Ryan;Hitt, Darren L.
    • Advances in aircraft and spacecraft science
    • /
    • v.1 no.4
    • /
    • pp.409-425
    • /
    • 2014
  • Converging flows of a gas and a liquid at a microchannel cross junction, under proper conditions, can result in the formation of periodic, dispersed microslugs. This microslug formation phenomenon has been proposed as the basis for a fuel injection system in a novel, 'discrete' monopropellant microthruster designed for use in next-generation miniaturized satellites. Previous experimental studies demonstrated the ability to generate fuel slugs with characteristics commensurate with the intended application during steady-state operation. In this work, numerical and experimental techniques are used to study the effect of valve actuation on slug characteristics, and the results are used to compare with equivalent steady-state slugs. Computational simulations of a valve with a 1 ms valve-actuation cycle show that as the ratio of the response time of the valve to the fully open time is increased, transient effects can increase slug length by up to 17%. The simulations also demonstrate that the effect of the valve is largely independent of surface tension coefficient, which is the thermophysical parameter most responsible for slug formation characteristics. Flow visualization experiments performed using a miniature valve with a 20 ms response time showed less than a 1% change in the length of slugs formed during the actuation cycle. The results of this study indicate that impulse bit and thrust calculations can discount transient effects for slower valves, but as valve technology improves transient effects may become more significant.

On the static and dynamic stability of beams with an axial piezoelectric actuation

  • Zehetner, C.;Irschik, H.
    • Smart Structures and Systems
    • /
    • v.4 no.1
    • /
    • pp.67-84
    • /
    • 2008
  • The present contribution is concerned with the static and dynamic stability of a piezo-laminated Bernoulli-Euler beam subjected to an axial compressive force. Recently, an inconsistent derivation of the equations of motions of such a smart structural system has been presented in the literature, where it has been claimed, that an axial piezoelectric actuation can be used to control its stability. The main scope of the present paper is to show that this unfortunately is impossible. We present a consistent theory for composite beams in plane bending. Using an exact description of the kinematics of the beam axis, together with the Bernoulli-Euler assumptions, we obtain a single-layer theory capable of taking into account the effects of piezoelectric actuation and buckling. The assumption of an inextensible beam axis, which is frequently used in the literature, is discussed afterwards. We show that the cited inconsistent beam model is due to inadmissible mixing of the assumptions of an inextensible beam axis and a vanishing axial displacement, leading to the erroneous result that the stability might be enhanced by an axial piezoelectric actuation. Our analytical formulations for simply supported Bernoulli-Euler type beams are verified by means of three-dimensional finite element computations performed with ABAQUS.

Multiple Simultaneous Specification Control of Antagonistic Actuation by Pneumatic Artificial Muscles (공압형 인공근육으로 구동되는 상극구동의 다중 동시 사양 제어)

  • Kang, Bong-Soo
    • The Journal of Korea Robotics Society
    • /
    • v.6 no.1
    • /
    • pp.34-41
    • /
    • 2011
  • This paper presents a frequency-response test performed on an antagonistic actuation system consisting of two Mckibben pneumatic artificial muscles and a pneumatic circuit. A linear model, capable of estimating the dynamic characteristics of the antagonistic system in the operating range of pneumatic artificial muscles, was optimally calculated based on frequency-response results and applied to a multiple simultaneous specification control scheme. Trajectory tracking results showed that the presented multiple simultaneous specification controller, built experimentally by three PD typed sample controllers, satisfied successfully all required control specifications; rising time, maximum overshoot, steady-state error.