• Title/Summary/Keyword: activity-centered instruction

Search Result 27, Processing Time 0.025 seconds

A Case Study of Teacher's Role in Inquiry-Oriented Mathematics Instruction: Centered on Science High School Students (탐구-중심 수학 수업에서 교사의 역할에 관한 사례연구: 과학고등학교 학생들을 중심으로)

  • Kim, Ik-Pyo
    • Journal of the Korean School Mathematics Society
    • /
    • v.11 no.2
    • /
    • pp.177-199
    • /
    • 2008
  • In the Netherlands, Streefland(Elbers, 2003) gave a solution on how teachers can help students to participate in the process of knowledge construction by investigating constructions and activities of a community of inquiry for a primary school students(between 11 and 13 years of age). In Australia, Goos(2004) analyzed the teacher's role in creating a classroom culture of inquiry, which appeared to be taken for granted by the Grade 12 group, for the Grade 11 students by classroom observation and interviews. In Korea, because of diverse obstacles with a university entrance examination, a study about teacher's role in inquiry-oriented instruction for high school mathematics schooling has rarely appeared in the literature. The purpose of this study is to investigate teacher's role for promoting and managing inquiry-oriented mathematics instruction effectively by a case study. To fulfill this purpose, we develop inquiry-oriented instruction model by investigating teacher's role as an assistant for helping students to do mathematical activity.

  • PDF

Changing the Culture of Elementary Mathematics Classroom : Sociomathematical Norms and Mathematical Practices (초등수학교실문화의 개선 : 사회수학적 규범과 수학적 관행)

  • 방정숙
    • Journal of Educational Research in Mathematics
    • /
    • v.14 no.3
    • /
    • pp.283-304
    • /
    • 2004
  • This study is to make strides toward an enriched understanding of changing a prevailing teacher-centered mathematics classroom culture to a student-centered culture by analyzing six reform-oriented classrooms of three elementary school teachers throughout a year This study provided a detailed description of important classroom episodes to explore how the participants in each class established a reform-oriented mathematics microculture. Despite the exemplary form of student-centered instruction, the content and qualities of the teaching practices are somewhat different in the extent to which students' ideas become the center of mathematical discourse and activity. Given the similarities in terms of general social norms and the differences in terms of socio-mathematical norms and mathematical practice, this study addresses some crucial issues on understanding the culture of elementary mathematics classroom in transition.

  • PDF

Development of Process-centered Performance Task For Curriculum·Instruction·Assessment Alignment based on 2015 Revised Home Economics Curriculum (교육과정, 수업, 평가의 일체화를 위한 가정과 과정 중심 수행과제 개발)

  • Lee, Gyeong Suk;Yoo, Taemyung;Yang, Ji Sun
    • Journal of Korean Home Economics Education Association
    • /
    • v.30 no.4
    • /
    • pp.165-185
    • /
    • 2018
  • The purpose of the study was to show the development process of the total instructional alignment based on the 2015 revised technology home economics curriculum, and to present the detailed aspects of this task. The results of this study were as follows: First, the clarity phase of the performance established the annual evaluation plan to ensure the consistency of the achievement standard, the learning objectives and the assessment objectives through an analysis of the curriculum. Second, the development phase of the performance tasks and the grading criteria analyzed the contents area and determined the performance assessment task. The performance assessment consisted of a portfolio and project activity types, and also comprised of knowledge markets, as well as e-NIE tasks, including individual tasks and collective tasks. Third, the performance assessment and the results phase were conducted after planning the class operation according to the instructors' directions and arrangement of the schedule into block classes. Afterwards, the performance assessment tasks were revised by the teaching-learning community and class reflection on practical application. As these results demonstrate, developing performance tasks that are centered on the learner's development processes can contribute to teachers' expertise and improvement of instruction.

Influence of Method Using Analogy on Students' Concept Learning (과학 수업에서 비유의 사용 방식이 학생들의 개념학습에 미치는 영향)

  • Yang, Chan-Ho;Kim, Kyung-Sun;Noh, Tae-Hee
    • Journal of The Korean Association For Science Education
    • /
    • v.30 no.8
    • /
    • pp.1044-1059
    • /
    • 2010
  • In this study, we investigated the influences of the method of using analogy on concept understanding, mapping understanding, and mapping error by analogical reasoning ability level. We also investigated students' perception of a role-playing analogy activity. Seventh graders (N=152) at a middle school were assigned to the comparison and the experimental groups. The students of the experimental group were taught about 'the relation between pressure and volume of gas' with experience-based role-playing analogy, while those of the comparison group were taught with explanation-centered analogy. Analyses of the results revealed that the instruction using roleplaying analogy was more effective in concept understanding and retention of mapping understanding than explanation-centered analogy instruction, regardless of analogical reasoning ability level. It was also found that the students of the experimental group had fewer mapping errors than those of the comparison group. However, there was little difference in t pes of mapping errors by the method of using analogy. The students of the experimental group answered that they did not have difficulties in performing the role-playing analogy activity and they actively engaged in the activity. They perceived that the role-playing analogy activity was interesting. Educational implication of these findings are discussed.

A Study on Construction of Multiplication Knowledge with Low Reasoning Ability (추론 능력이 열등한 초등학교 2학년 학생의 곱셈 지식 구성 능력에 관한 연구)

  • Lee, So-Min;Kim, Jin-Ho
    • Journal of the Korean School Mathematics Society
    • /
    • v.12 no.1
    • /
    • pp.47-70
    • /
    • 2009
  • The purpose of this research was to confirm one of constructivists' assumptions that even children 조o are with low reasoning ability can make reflective abstracting ability and cognitive structures by this ability can make generation ability of new knowledge by themselves. To investigate the assumption, learner-centered instruction were implemented to 2nd grade classroom located in Suseong Gu, DaeGu City and with lesson plans which initially were developed by Burns and corrected by the researchers. Recordings videoed using 2 video cameras, observations, instructions, children's activity worksheets, instruction journals were analyzed using multiple tests for qualitative analysis. Some conclusions are drawn from the results. First, even children with low reasoning ability can construct mathematical knowledge on multiplication in their own. ways, Thus, teachers should not compel them to learn a learning lesson's goals which is demanded in traditional instruction, with having belief they have reasoning ability. Second, teachers need to have the perspectives of respects out of each child in their classroom and provide some materials which can provoke children's cognitive conflict and promote thinking with the recognition of effectiveness of learner-centered instruction. Third, students try to develop their ability of reflective and therefore establish cognitive structures such as webs, not isolated and fragmental ones.

  • PDF

A Survey of Elementary school teachers' perceptions of mathematics instruction (수학수업에 대한 초등교사의 인식 조사)

  • Kwon, Sungyong
    • Education of Primary School Mathematics
    • /
    • v.20 no.4
    • /
    • pp.253-266
    • /
    • 2017
  • The purpose of the study was to investigate the perceptions of Elementary school teachers on mathematics instruction. To do this, 7 test items were developed to obtain data on teacher's perception of mathematics instruction and 73 teachers who take mathematical lesson analysis lectures were selected and conducted a survey. Since the data obtained are all qualitative data, they were analyzed through coding and similar responses were grouped into the same category. As a result of the survey, several facts were found as follow; First, When teachers thought about 'mathematics', the first words that come to mind were 'calculation', 'difficult', and 'logic'. It is necessary for the teacher to have positive thoughts on mathematics and mathematics learning, and this needs to be stressed enough in teacher education and teacher retraining. Second, the reason why mathematics is an important subject is 'because it is related to the real life', followed by 'because it gives rise to logical thinking ability' and 'because it gives rise to mathematical thinking ability'. These ideas are related to the cultivating mind value and the practical value of mathematics. In order for students to understand the various values of mathematics, teachers must understand the various values of mathematics. Third, the responses for reasons why elementary school students hate mathematics and are hard are because teachers demand 'thinking', 'because they repeat simple calculations', 'children hate complicated things', 'bother', 'Because mathematics itself is difficult', 'the level of curriculum and textbooks is high', and 'the amount of time and activity is too much'. These problems are likely to be improved by the implementation of revised 2015 national curriculum that emphasize core competence and process-based evaluation including mathematical processes. Fourth, the most common reason for failing elementary school mathematics instruction was 'because the process was difficult' and 'because of the results-based evaluation'. In addition, 'Results-oriented evaluation,' 'iterative calculation,' 'infused education,' 'failure to consider the level difference,' 'lack of conceptual and principle-centered education' were mentioned as a failure factor. Most of these factors can be changed by improving and changing teachers' teaching practice. Fifth, the responses for what does a desirable mathematics instruction look like are 'classroom related to real life', 'easy and fun mathematics lessons', 'class emphasizing understanding of principle', etc. Therefore, it is necessary to deeply deal with the related contents in the training courses for the improvement of the teachers' teaching practice, and it is necessary to support not only the one-time training but also the continuous professional development of teachers.

A Study on the Development of Computer Assisted Instruction for Definite Integral (정적분 단원에 관한 CAI프로그램 개발 연구)

  • 우제환
    • Journal of the Korean School Mathematics Society
    • /
    • v.1 no.1
    • /
    • pp.97-109
    • /
    • 1998
  • The activities of teaching and learning are to try to reach the lesson object most closely in many ways. Considering that the lesson objects are to get the principle or law of a concept, to acquire the mathematical function, to master it through repeated exercises and to solve mathematical problems, we need many ways to reach such objects. Among the many ways, we can first think of one: the students will learn with curiosity and according to their own ability or advancing level in learning when teachers study and prepare necessary contents enough in advance by using computers, showing the right program to learners' needs. For example, defining definite integral by measuration by parts will help understand measuration by parts well and know the meaning of definite integral correctly, In teaching and learning by the use of this program, the educational effects are expected as follows. 1. It is thought that this program will stimulate the desire for and interest in learning because it used animation and acoustic effect. And voluntary and positive thinking activity will be shown. 2. It is expected that the conviction of formulas will be got and the concept of definite integral will be remembered firmly by showing how to measure the width of circle with the use of measuration by parts in various other ways instead of the ways used at present. 3. It is expected that students will feel the pleasure of mathematics in life when they recognize mathematical facts scattered really in our life rather than mathematical difficulties. 4. It is expected that the repeated review of programs already designed will remove the fear of incomplete parts and help review again. 5. It is certain that positive attitude in life will be formed as teacher-centered class is changed into learner-centered class and unwilling study is changed into self-oriented study. However, I think this program is insufficient for humanbeing-centered education given directly in contact with students on the ground of the variety in mathematical education and applications in many ways. And mechanically inhuman computers leave some solutions to be desired

  • PDF

The effect of academic achievement and cooperative learning attitudes via differentiated cooperative learning in a class (학급 내 수준별 협동학습이 수학 학업성취도 및 협동학습 태도에 미치는 영향)

  • An, Jong Su
    • Journal of the Korean School Mathematics Society
    • /
    • v.17 no.4
    • /
    • pp.465-492
    • /
    • 2014
  • In this study, through the analysis of the mathematics curriculum and textbooks, we produce the cooperative learning activity sheets which was appropriate instructional content for various levels. And, by using them appropriately at the levels of student learning on their own interest, we enhance academic achievement and cooperative learning attitudes. Specific for details for this study are as follows: First, through the applying a variety of the differentiated cooperative learning activity sheets and developing instruction learning, we improve the academic achievement. Second, through the making and utilizing the differentiated cooperative learning activity sheets and the interest and attitudes in mathematics, we improve the cooperative learning attitude. Third, through the levels of the subgroup cooperative learning, we improve the math learning abilities through a learner-centered. Further the purpose of this study is to bring up complementary cooperative spirit among colleagues.

  • PDF

An Analysis of Laboratory Instructions in Elementary School Science (초등학교 과학 실험 수업 분석)

  • Yang, Il-Ho;Jeong, Jin-Woo;Hur, Myung;Kim, Young-Shin;Kim, Jin-Soo;Cho, Hyun-Jun;Oh, Chang-Ho
    • Journal of Korean Elementary Science Education
    • /
    • v.25 no.3
    • /
    • pp.281-295
    • /
    • 2006
  • The purpose of this study was to analyze laboratory instructions used in elementary school science lessons by utilizing an analysis instrument for science laboratory instruction(AISLI). This analysis instrument was comprised of 3 elements; the aim of the laboratory activity, the interaction generated, and the inquiry process. There were also a total of 20 sub-categories and its validity was identified at 0.89 by four science educators. For the purposes of this study, 90 laboratory instructions were video-recorded, then transcribed. Laboratory instructions were analyzed by three analyst teams, and the inter-rater reliability within teams was checked through Pearson correlation, with a score of 0.91. The results of this study were as follows: the two principle aims of laboratory activity, namely, to acquire declarative knowledge and to increase attitudes toward science, were observed to be in evidence in 98.9% and 92.2% in laboratory instructions, and the levels of categories of the interaction and inquiry processes were situated at level-1. The implications of these results are that laboratory instructions currently in use do not place sufficient demands upon students' scientific thinking and are not at all conducive to student-centered activities. Therefore in order to remedy this situation, the usefulness of current science laboratory instructions need to be re-evaluated.

  • PDF

Analysis of Inquiry Activity Types in the High School Life Science II Textbooks according to the 2015 Revised Science Curriculum (2015 개정 과학과 교육과정에 따른 고등학교 생명과학II 교과서의 탐구활동 유형 분석)

  • Jeong, Soo Yeon;Chang, Jeong Ho
    • Journal of Science Education
    • /
    • v.43 no.1
    • /
    • pp.43-63
    • /
    • 2019
  • The types of inquiry activities included in Life Science II textbooks under the 2015 revised science curriculum were extracted and compared with those of six major and five different publishing companies. The fact that the number of investigation discussions and presentations (IP) increased and the expressions (EX) were included in each unit was interpreted as sufficient to transform the classroom instruction in the 2015 revised science curriculum into student-centered activities. The type of inquiry activities in student-centered activities such as experiment observation, simulation activities, investigation discussions, and presentations accounted for about 41% more than the 27% of 2009 revised science curriculum. However, since data interpretation type is still the largest, it is necessary to reduce the types of data interpretation and to increase the number of types of simulation activities and expressions in order to expand students' creativity and thinking ability when textbook development is needed in the future. In addition to the development of biotechnology, teachers need to reconstruct diverse science materials for each textbook and then use them for students to induce balanced thinking, and try to expand expressive power, creativity, logic, and critical thinking skills.