• Title/Summary/Keyword: activity of finding mathematics error

Search Result 3, Processing Time 0.017 seconds

Students' cognition and a teacher's questioning strategies in the error-finding activity of the concept of irrational numbers (무리수 개념의 오류 찾기 활동에서 학생 인식과 교사의 발문 전략)

  • Na, Youn-Sung;Choi, Song Hee;Kim, Dong-joong
    • The Mathematical Education
    • /
    • v.62 no.1
    • /
    • pp.35-55
    • /
    • 2023
  • The purpose of this study is to examine not only students' cognition in the mathematical error-finding activity of the concept of irrational numbers, but also the students' learning stance regarding the use of errors and a teacher's questioning strategies that lead to changes in the level of mathematical discourse. To this end, error-finding individual activities, group activities, and additional interviews were conducted with 133 middle school students, and students' cognition and the teacher's questioning strategies for changes in students' learning stance and levels of mathematical discourse were analyzed. As a result of the study, students' cognition focuses on the symbolic representation of irrational numbers and the representation of decimal numbers, and they recognize the existence of irrational numbers on a number line, but tend to have difficulty expressing a number line using figures. In addition, the importance of the teacher's leading and exploring questioning strategy was observed to promote changes in students' learning stance and levels of mathematical discourse. This study is valuable in that it specified the method of using errors in mathematics teaching and learning and elaborated the teacher's questioning strategies in finding mathematical errors.

A Study on The Application of Inclusion-Exclusion Method in Soma Cube Activity (소마큐브(Soma Cube) 활동에서 포함-배제 방법의 활용에 대한 연구)

  • Shim, Sang-Kil;Hwang, Sun-Wook
    • The Mathematical Education
    • /
    • v.48 no.1
    • /
    • pp.33-45
    • /
    • 2009
  • The purpose of this article is to study characteristics of Soma Cube in combinatorial-geometric point of view, and to present basic substances and direction for efficient Soma cube activities in school mathematics upon systematical analysis of methods of finding solutions using Inclusion-Exclusion Method. We can apply Inclusion-Exclusion Method to find all possible solutions in Soma Cube activities not as trial-and-error method but as analytical method. Because Inclusion-Exclusion Method can reduce the number of problem-solving variables by making high conjunction in the choice of pieces. Soma cube pieces can be sorted as 'flat' ones and 'non-flat' ones, which would be another effective method in the manipulation of Soma Cube pieces.

  • PDF

An Analysis of Problem Posing in the 5th and 6th Grade Mathematics Textbooks and Errors in Problem Posing of 6th Graders (5, 6학년 수학교재의 문제만들기 내용 및 6학년 학생들의 문제만들기에서의 오류 분석)

  • Kim, Gyeong Tak;Ryu, Sung Rim
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.17 no.2
    • /
    • pp.321-350
    • /
    • 2013
  • The purpose of this study to analysis of problem posing in 5th and 6th grade mathematics textbooks and to comprehend errors in the problem posing activity of 6th graders in elementary school. For solving the research problems, problem posing contents were extracted from mathematics textbooks and practice books for the 5th and 6th grade of elementary school in the 2007 revised national curriculum, and they were analyzed, according to each grade, domain and type. Based on the analysis results, 10 problem posing questions which were extracted and developed, were modified and supplemented through a pre-examination, and a questionnaire that problem posing questions are evenly distributed, according to each grade, domain and type, was produced. This examination was conducted with 129 6th graders, and types of error in problem posing were analyzed using collected data. The implications from the research results are as follows. First, it was found that there was a big numerical difference of problem posing questions in the 5th and 6th grade, and problem posing questions weren't properly suggested in even some domains and types, because the serious concentration in each grade, type and domain. Therefore, textbooks to be developed in the future would need to suggest more various and systematic of problem posing teaching learning activity for each domain and type. Second, the 'error resulting from the lack of information' occurred the most in the problems that 6th graders posed, followed by the 'error in the understanding of problems', 'technical errors', 'logical errors' and 'others'. This implies that a majority of students missed conditions necessary for problem solving, because they have been used to finding answers to given questions only. For such reason, there should be an environment in which students can pose problems by themselves, breaking from the way of learning to only solve given problems.

  • PDF