• Title/Summary/Keyword: activity of earthquake

Search Result 91, Processing Time 0.025 seconds

Recent Earthquake Activity in and around Kyeongsang Basin (최근의 경상분지 일원에서의 지진활동)

  • 전정수
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.391-398
    • /
    • 1998
  • To understand the current seismic activity and regional tectonic status in and around Gyeongsang basin, Korea Institute of Geology, Mining, and Materials(KIGAM) has performed the earthquake monitoring around the Gyeongsang basin since early 1980's with portable analog seismic instruments for about two months every year. As a part of POSEIDON project, Korea-Japan joint observation around gyeongsang basin in 1991 and 1992, was performed using by temporary seismic station. KIGAM has been continuously operated nine short-period 3-components digital seismic stations since the end of 1994. During the observation period, 247 earthquakes were analyzed and their magnitude was less than 4.5. In general, we could not find any relationship between seismic activity and known surface geological features. But the epicenters were rather concentrated with NW-SE direction. The most active seismicity was found in Gyeongbuk Gyeongjugun Seokeupri and Hyodongri, and Yeongilgun Janggiri and Guryongpo in land, and in three region along the east coast which are 10km and 30km east off from Gampo and 30km east off from Jongja in offshore.

  • PDF

Method of Recurrence Interval Estimation for Fault Activity from Age Dating Data (연대측정자료를 이용한 단층활동주기 산정 방법)

  • 최원학
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.04a
    • /
    • pp.74-80
    • /
    • 2001
  • The estimation of recurrence interval for fault activity and earthquake is an important input parameter for seismic hazard assessment. In this study, the methods of recurrences interval estimation were reviewed and tentative calculation was performed for age dating data which have uncertainty. Age dating data come from previous studies of Ulsan fault system which is a well developed lineament in the southeastern part of korean Peninsula. Age dating for fault gouges, parent rocks, Quaternary sediments and veins were carried out by several researchers through various methods. Recurrence interval for fault activity was estimated on the basis of the age dating data of minor fault gouge and sediments during past 3Ma. The estimated recurrence interval was about 430-500 ka. Exact estimation of recurrence interval for fault activity need to compile more geological data and fault characteristics such as fault length, amount of displacement, slip rate and accurate fault movement age. In the future, the methods and results of fault recurrence interval estimation should be considered for establishing the criteria for domestic active fault definition.

  • PDF

Seismic characteristics of Tectonic Provinces of The Korean Peninsula (한반도 주요 지체구조구별 지진학적 특성)

  • 이기화
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.10a
    • /
    • pp.64-71
    • /
    • 1999
  • Seismicity of the Korean Peninsula shows intraplate seismicity that has irregular pattern in both time and space. Seismic data of the Korean peninsula consists of historical earthquakes and instrumental earthquakes. In this study we devide these data into complete part and incomplete part and considering earthquake size uncertainty estimate seismic hazard parameters - activity rate λ, b value of Gutenberg-Richter relation and maximum possible earthquake IMAX by statistical method in each major tectonic provinces. These estimated values are expected to be important input parameters in probabilistic seismic hazard analysis and evaluation of design earthquake.

  • PDF

Seismic Hazard Analysis Considering the Incompleteness in the Korean Earthquake Catalog (한반도 지진목록자료의 불완정성을 고려한 지진재해도 분석)

  • 연관희
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.413-420
    • /
    • 1998
  • In this paper, two methods, Stepp's and EQHAZARD, are introduced and applied to a recent earthquake catalog for the entire Korean Peninsula that can estimate the seismicity by incorporating the incompleteness of the earthquake catalog. EQHAZARD method, different from Stepp's method in that it used priori information besides the assumption of stationary Poisson process of the earthquakes, produces the higher seismicity rate for the smaller earthquakes. EQHAZARD method are also used to estimated the incompleteness of the recent earthquake catalog for the southern part of the Korean Peninsula in terms of the Probability of Activity for the specified earthquke magnitude classes and time periods. It is believed that the Probability of Activity thus obtained can be used as a strong priori information in estimating the seismicity for a seismic source within the region where there are not enough earthquakes detected. Finally, it is demonstrated that the arbitrary selection of the methods. of incompleteness analysis brings quite different seismic hazard results, which suggests the need to employ a rigid quantitative method for incompleteness analysis in estimating the seismicity parameters in order to reduce the uncertainty in the Seismic Hazard Results with the EQHAZARD method being one of the competent practical alternatives.

  • PDF

Probabilistic Approach for Evaluation of the Fault Activity (확률론적 방법에 의한 단층의 활동도 평가)

  • Chang, Chun-Joong;Choi, Weon-Hack;Yun, Kwan-Hee;Park, Dong-Hee;Im, Chang-Bock
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.33-40
    • /
    • 2006
  • Since early 1990's, several Quaternary faults have been found in the southeastern part of the Korean peninsula with reference to fault activity. Because some of these faults could be considered a capable fault, it is a very delicate matter, which need to be deal with carefully in assessing the seismic hazard. In determining whether or not a faults are capable, because of the low rate of seismicity and insufficient relationship between instrumental macro-seismicity and fault, there has been considerable debate among geologists and geophysicists in Korea. In this study, we discuss the criteria and probabilistic approaches that are used to assess whether or not a fault is seismogenic. And, we preliminarily also suggest the probability of fault activity from the spatial association between faults and earthquake epicenters, fault slip and tectonic stress, and geological evidence for multiple episodes of reactivation.

  • PDF

24 January 2020 Sivrice (Elazığ) earthquake damages and determination of earthquake parameters in the region

  • Isik, Ercan;Aydin, Mehmet Cihan;Buyuksarac, Aydin
    • Earthquakes and Structures
    • /
    • v.19 no.2
    • /
    • pp.145-156
    • /
    • 2020
  • The 24 January 2020 (Mw=6.8) earthquake with epicentre in Elazığ (Sivrice) on the East Anatolian Fault Zone caused loss of life and property. The information was given about the seismotectonic setting and regional seismicity along this fault zone and aftershock activity and ground motion data of this earthquake. Earthquake parameters were obtained for five different earthquake stations which were closer to the epicentre. Horizontal and vertical design spectra were obtained for the geographic locations for each earthquake station. The obtained spectra for the earthquake epicentre were compared with selected appropriate attenuation relationships. The damages after earthquake were evaluated via geotechnical and structural aspects. This study also aims to investigate the cause-effect relationships between structural damage in reinforced-concrete and masonry structures, respectively. The lack of engineering services was effective on the amount of damage in masonry structures. Insufficient reinforcement and concrete strength, dimensions and inadequate detailing increased the amount of damage in reinforced-concrete structures. Importance should be given to negative parameters that may weaken the defence mechanisms of structures for earthquake-resistant structural design.

Estimation of seismicity parameters of the seismic zones of the Korean Peninsula using incomplete and complete data files (불완전한 자료 및 완전한 자료 목록을 이용한 한반도 지진구들의 지진활동 매개변수 평가)

  • 이기화
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.04a
    • /
    • pp.23-30
    • /
    • 1998
  • An estimation of seismic risk parameters by seismic zones of the Korea Peninsula in order to calculate the seismic hazard values using these was erformed. Seven seismic source zones were selected in consideration of seismicity and geology of Korean Peninsula. The seismicity parameters that should be estimated are maximum intensity, activity rate and b value in the Gutenberg - Richter relation. For computation of these parameters, least square method or maximum likelihood method is applied to the earthquake data in two ways; the one for the data without maximum intensity and the other with maximum intensity. Earthquake data since Choseon Dynasty is regarded as complete and estimation of parameters was made for these data using above two ways. And recently, a new method is published that estimate the seismicity parameters using mixed data containing large historical events and recent complete observations. Therefore, this method is applied to the whole earthquake data of the Korean Peninsula. It turns out that the b value computed considering maximum intensity is slightly lower than that computed considering without maximum intensity, and it becomes still lower when the incomplete data prior to Choseon Dynasty is used. In the case of the activity rates, the values obtained without maximum intensity and that with maximum intensity are similar, though they are lower when the incomplete data is used. The values of maximum intensities are usually lower when considering incomplete data. In the seismic source zone including the Yangsan Fault zone, however, the values are higher when considering the incomplete data.

  • PDF

Recent Research and A, pp.ication of Earthquake Protection System in Taiwan

  • Chang, Kuo-Chun;Tsai, Meng-Hao
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.3
    • /
    • pp.37-49
    • /
    • 1998
  • Research and a, pp.ication of earthquake protection system in Taiwan have become very active since about ten years ago. Many passive isolators, etc., have been studied extensively. These studies have resulted in a few practical a, pp.ications and proposals of two draft design provisions for seismic isolation design of bridges and buildings. In addition to the pass control, analytical studies on active semi-active control have also been very active and the experimental studies have scheduled in the near future. This paper summarise the progress on recent research and a, pp.ication of earthquake protection systems in Taiwan. The emphases are given to the control systems that have been a, pp.ied in practical a, pp.ications.

  • PDF

Important Parameters Related With Fault for Site Investigation of HLW Geological Disposal

  • Jin, Kwangmin;Kihm, You Hong;Seo, Dong-Ik;Kim, Young-Seog
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.4
    • /
    • pp.533-546
    • /
    • 2021
  • Large earthquakes with (MW > ~ 6) result in ground shaking, surface ruptures, and permanent deformation with displacement. The earthquakes would damage important facilities and infrastructure such as large industrial establishments, nuclear power plants, and waste disposal sites. In particular, earthquake ruptures associated with large earthquakes can affect geological and engineered barriers such as deep geological repositories that are used for storing hazardous radioactive wastes. Earthquake-driven faults and surface ruptures exhibit various fault zone structural characteristics such as direction of earthquake propagation and rupture and asymmetric displacement patterns. Therefore, estimating the respect distances and hazardous areas has been challenging. We propose that considering multiple parameters, such as fault types, distribution, scale, activity, linkage patterns, damage zones, and respect distances, enable accurate identification of the sites for deep geological repositories and important facilities. This information would enable earthquake hazard assessment and lower earthquake-resulted hazards in potential earthquake-prone areas.

Prediction of Strong Ground Motion in Moderate-Seismicity Regions Using Deterministic Earthquake Scenarios

  • Kang, Tae-Seob
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.4
    • /
    • pp.25-31
    • /
    • 2007
  • For areas such as the Korean Peninsula, which have moderate seismic activity but no available records of strong ground motion, synthetic seismograms can be used to evaluate ground motion without waiting for a strong earthquake. Such seismograms represent the estimated ground motions expected from a set of possible earthquake scenarios. Local site effects are especially important in assessing the seismic hazard and possible ground motion scenarios for a specific fault. The earthquake source and rupture dynamics can be described as a two-step process of rupture initiation and front propagation controlled by a frictional sliding mechanism. The seismic wavefield propagates through heterogeneous geological media and finally undergoes near-surface modulations such as amplification or deamplification. This is a complex system in which various scales of physical phenomena are integrated. A unified approach incorporates multi-scale problems of dynamic rupture, radiated wave propagation, and site effects into an all-in-one model using a three-dimensional, fourth-order, staggered-grid, finite-difference method. The method explains strong ground motions as products of complex systems that can be modified according to a variety of fine-scale rupture scenarios and friction models. A series of such deterministic earthquake scenarios can shed light on the kind of damage that would result and where it would be located.