• 제목/요약/키워드: active turbulence

검색결과 45건 처리시간 0.027초

능동 파괴 방호 구동제어기의 열 유동 해석 (Thermal and Flow Analysis of a Driving Controller for Active Destruction Protections)

  • 유봉조;오부진;김영식
    • 한국산학기술학회논문지
    • /
    • 제18권2호
    • /
    • pp.235-242
    • /
    • 2017
  • 능동 파괴 방호 구동제어기는 기계, 항공 및 군사 분야 등에서 사용될 수 있는 제어기로서, 상대의 비행물체를 능동제어를 통해 추적 타격하는데 사용된다. 구동제어기를 이용하여 목표지점까지의 정밀도를 갖고 동작이 유지되어야 하기 때문에, 이에 대한 신뢰성 확보가 대단히 중요하다. 이러한 구동제어기가 사용되는 주위 환경의 온도는 약 $-32^{\circ}C{\sim}50^{\circ}C$($241^{\circ}K{\sim}358^{\circ}K$)이다. 신뢰성을 갖기 위해 구동제어기에서 중요시 간주되는 문제 중의 하나는 구동제어기 내의 열 발생이 어느 한계수준($85^{\circ}C$($358^{\circ}K$))이하로 유지되어야 정밀도와 신뢰성을 확보할 수 있다는 점이다. 따라서 구동제어기 내의 열 유동특성에 대한 연구와 분석이 필요하게 된다. 본 논문의 수치시뮬레이션을 위해 저 레이놀드 수 $k-{\epsilon}$ 난류모델과 비압축성 점성 유동을 가정하였고, 상용 소프트웨어인 Solid-Works Flow Simulation을 사용하였다. 본 논문의 목적은 각종 칩이나 보드 등을 갖는 구동제어기 내부의 열 유동 특성을 해석하여 구동제어기의 안전한 설계를 하는데 있다. 해석으로부터, 보드들과 칩들의 온도분포가 어떤 한계 수준 이내에 있음을 보여준다.

유체-구조 연성해석을 이용한 능동/수동 유동제어방식이 결합된 고하중 축류 팬의 성능특성 연구 (Investigation on Aerodynamic Performance of a Highly-Loaded Axial Fan with Active/Passive Flow Control Using FSI Analysis)

  • 마상범;김광용;최재호;이원석
    • 한국수소및신에너지학회논문집
    • /
    • 제28권1호
    • /
    • pp.113-119
    • /
    • 2017
  • An investigation on aerodynamic performance of a highly-loaded axial fan has been conducted to find the effects of tip injection and casing groove on aerodynamic performance in this study. Three-dimensional Reynolds-averaged Navier-Stokes equations with $k-{\varepsilon}$ turbulence model were used to analyze the fluid flow in the fan with Fluid-Structure Interaction (FSI) analysis. The hexahedral grid was used to construct computational domain, and the grid dependency test drew the optimal grid system. FSI analysis was also carried out to predict the deformation of rotor and stator blades, and the effect of deformation on the aerodynamic performance of axial fan was analyzed compared to the performance predicted without FSI analysis.

해양 글라이더에 관하여: 한국 근해에서의 적용 가능성 (Underwater Glider: Its Applicability in the East/Japan Sea)

  • 박종진
    • Ocean and Polar Research
    • /
    • 제35권2호
    • /
    • pp.107-121
    • /
    • 2013
  • The underwater glider is an autonomous vehicle that can glide through the ocean interior by using a pair of wings attached to its body and can move up and down through the water column by changing its buoyancy. As of now, there are three widely-used gliders, namely, the Spray that was co-developed by Scripps Oceanographic Institution and Woods Hole Oceanographic Institution, the Slocum produced by the Webb Research Cooperation, and the Seaglider that was produced by the University of Washington. In this paper, I will introduce these three gliders and discuss the principles and procedures related to glider operation as well as the application and extendability of modern physical and bio-geochemical sensors to gliders. My experiences in developing a glider for measuring ocean turbulence and testing it 7 times during 12 days are shared in this paper. On the basis of my experiences and knowledge, different kinds of aspects that should be considered for successful glider operation are discussed. In addition, a suggestion is made as to what would be the ideal way to operate underwater gliders in the East/Japan Sea. At the end, the current status of active glider operation teams is presented and the efforts to proceed toward future gliders are briefly introduced.

영구자석형 동기발전기를 이용한 풍력단지의 플리커 저감 (Flicker Mitigation in a Wind Farm by Controlling a Permanent Magnet Synchronous Generator)

  • 팜반호안;김대현;안진홍;김일환;오성보;김호찬;김세호
    • 제어로봇시스템학회논문지
    • /
    • 제15권12호
    • /
    • pp.1163-1168
    • /
    • 2009
  • The power quality of wind energy becomes more and more important in connecting wind-farms to the grid, especially weak grid. This paper presents the simulation of a wind farm of a permanent magnet synchronous generator (PMSG) and a doubly fed induction generator (DFIG). Flicker mitigation is performed by using PMSG as a static synchronous compensator (STATCOM) to regulate the voltage at the point of common coupling (PCC). A benefit of the measure is that integrating two function of to control the active power flow and to reduce the voltage flicker in a wind farm. Simulation results show that controlling PMSG is an effective and economic measure in reducing the flicker during continuous operation of grid connected wind turbines regardless of short circuit capacity ratio, turbulence intensity and grid impedance angle.

Adaptive Optics in Institute of Optics and Electronics, China

  • Jiang, Wenhan;Ling, Ning
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 2000년도 하계학술발표회
    • /
    • pp.3-3
    • /
    • 2000
  • Adaptive Optical (AO) technology can compensate for wave-front errors in real-time to improve image and beam quality. The research and development on AO in China began in 1979. In 1980, the first laboratory on AO in China was established in Institute of Optics and Electronics (IOE), Chinese Academy of Sciences (CAS). Since then several AO systems have been built in this Laboratory. The 19-element system is the first AO system in the world ever used in inertial confinement fusion (ICF) facility in our knowledge. It corrects the static error of this large laser engineering. The 21-element system was firstly tested at the 1.2m telescope of Kunming Observatory in 1990 and then up-dated as an IR AO system installed at the 2.16m telescope of Beijing Observatory. The 37-element system was used with a turbulence cell in Laboratory on Atmospheric Optics in Hefei to conduct elementary research on Atmospheric Optics. The 61-element system for astronomical observation is newly developed. It has been successfully installed at the 1.2m telescope of Kunming Observatory and a laser guide star system will be integrated with the system. A compact AO system using our newly developed miniature DM for high resolution ophthalmic imaging of retina is also being built. The key elements of these AO systems, deformable mirrors and fast-steering mirrors, are all developed in this Laboratory. In this talk, the main configurations of these AO systems, some test results as well as the specifications of these active mirrors will be presented.

  • PDF

무인 헬기 자동 착륙을 위한 3차원 위치 추적 시스템 (Three-Dimensional Location Tracking System for Automatic Landing of an Unmanned Helicopter)

  • 추영열;강성호
    • 제어로봇시스템학회논문지
    • /
    • 제14권6호
    • /
    • pp.608-614
    • /
    • 2008
  • This paper describes a location tracking system to guide landing process of an Unmanned Helicopter(UMH) exploiting MIT Cricket nodes. For automatic landing of a UMH, a precise positioning system is indispensable. However, GPS(Global Positioning System) is inadequate for tracking the three dimensional position of a UMH because of large positioning errors. The Cricket systems use Time-Difference-of-Arrival(TDoA) method with ultrasonic and RF(Radio Frequency) signals to measure distances. They operate in passive mode in that a listener attached to a moving device receives distance signals from several beacons located at fixed points on ground. Inevitably, this passive type of implementation causes large disturbances in measuring distances between beacons and the listener due to wind blow from propeller and turbulence of UMH body. To cope with this problem, we proposed active type of implementation for positioning a UMH. In this implementation, a beacon is set up at UMH body and four listeners are located at ground area at least where the UMH will land. A pair of Ultrasonic and RF signals from the beacon arrives at several listeners to calculate the position of the UMH. The distance signals among listeners are synchronized with a counter value appended to each distance signals from the beacon.

능동형 케이싱 트리트먼트의 형상 변화가 원심압축기의 공력성능에 미치는 영향 (Geometrical Effects of an Active Casing Treatment on Aerodynamic Performance of a Centrifugal Compressor)

  • 마상범;김광용
    • 한국유체기계학회 논문집
    • /
    • 제19권4호
    • /
    • pp.5-12
    • /
    • 2016
  • In this study, a parametric study on a cavity as casing treatment of a centrifugal compressor has been conducted using three-dimensional Reynolds-averaged Navier-Stokes equations with shear stress transport turbulence model. Two kinds of cavity were applied at choke and surge conditions, respectively, in this work. Inlet and outlet port widths, angle of outlet port, and length of cavity were chosen as the geometric parameters and investigated to find their effects on the aerodynamic performances such as adiabatic efficiency at design mass flow rate and stall margin of the centrifugal compressor. It was found that the aerodynamic performances of the centrifugal compressor were affected considerably by the four geometric parameters. The adiabatic efficiency was hardly changed by the geometric parameters, excepts for the angle of outlet port. With an increase in the angle of outlet port, the adiabatic efficiency and the stall margin decreased. The stall margin was more sensitive to the outlet port width than to the other geometric parameters. And, with a decrease in the outlet port width, the stall margin increased by 2% compared to that of the reference.

New estimation methodology of six complex aerodynamic admittance functions

  • Han, Y.;Chen, Z.Q.;Hua, X.G.
    • Wind and Structures
    • /
    • 제13권3호
    • /
    • pp.293-307
    • /
    • 2010
  • This paper describes a new method for the estimation of six complex aerodynamic admittance functions. The aerodynamic admittance functions relate buffeting forces to the incoming wind turbulent components, of which the estimation accuracy affects the prediction accuracy of the buffeting response of long-span bridges. There should be two aerodynamic admittance functions corresponding to the longitudinal and vertical turbulent components, respectively, for each gust buffeting force. Therefore, there are six aerodynamic admittance functions in all for the three buffeting forces. Sears function is a complex theoretical expression for the aerodynamic admittance function for a thin airfoil. Similarly, the aerodynamic admittance functions for a bridge deck should also be complex functions. This paper presents a separated frequency-by-frequency method for estimating the six complex aerodynamic admittance functions. A new experimental methodology using an active turbulence generator is developed to measure simultaneously all the six complex aerodynamic admittance functions. Wind tunnel tests of a thin plate model and a streamlined bridge section model are conducted in turbulent flow. The six complex aerodynamic admittance functions, determined by the developed methodology are compared with the Sears functions and Davenport's formula.

The Review of Studies on Heat Transfer in Impinging Jet

  • Hong, Sung-Kook;Cho, Hyung-Hee
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제13권4호
    • /
    • pp.196-205
    • /
    • 2005
  • In this paper, recent research trend on heat transfer in impinging jet is reviewed. We focused on submerged jet that air issued into air or liquid issued into liquid. To control and enhance the heat transfer in single jet, researchers have performed a lot of experiments by considering the nozzle geometry, impinging surface and active method such as jet vibration, secondary injection and suction flow. The studies on multiple jet have been mainly focused on finding out the optimum condition and on investigating many different factors concerned with application condition (crossflow, rotation and geometry etc.) and combined techniques (rib turbulator, pin fin, dimple and effusion hole etc.). All most experiments showed the detailed heat transfer data by using liquid crystal method, infrared camera technique and naphthalene sublimation method. Many numerical calculations have been performed to investigate the flow and heat transfer characteristics in laminar jet region. Various turbulence models such as $k-\varepsilon-\bar{\nu^2}$, modified $k-\varepsilon-f_{\mu}$ were applied to the calculation for turbulent jet and the predicted results showed a good agreement with the experimental data. Although a lot of studies on impinging jet have performed consistently up to recently, further studies are still required to understand the flow and heat transfer characteristics more accurately, and to give a guideline for optimum impinging jet design in various applications.

Preexsiting Suprathermal Electrons and Preacceleration at Quasi-Perpendicular Shocks in Merging Galaxy Clusters

  • Ha, Ji-Hoon;Ryu, Dongsu;Kang, Hyesung;Kim, Sunjung
    • 천문학회보
    • /
    • 제46권2호
    • /
    • pp.51.1-51.1
    • /
    • 2021
  • Merger shocks with Ms < ~ 3 - 4 have been detected in galaxy clusters through radio observations of synchrotron radiations emitted from cosmic-ray (CR) electrons. The CR electrons are believed to be produced by the so-called diffusive shock acceleration (DSA) at the merger shocks. To describe the acceleration of electrons, the injection into DSA has to be understood. Recent studies have showed that electrons could be energized through stochastic shock drift acceleration (SSDA), a mechanism mediated by multi-scale plasma waves at shock transition zone. However, such preacceleration process seems to be effective only at the supercritical shocks with Ms > ~ 2.3, implying that further studies should be done to explain radio relics with weaker shocks. In this talk, we present the results obtained by fully kinetic 2D particle-in-cell (PIC) simulations, which include pre-existing suprathermal electrons possibly ejected from active galactic nuclei (AGNs) or produced by previous episodes of turbulence/shocks. The simulations indicate that the pre-existing electrons enhance the upstream plasma waves in shocks with Ms < ~ 2.3. However, the wavelength of such waves is not long enough to scatter off suprathermal electrons and energize them to the injection momentum for DSA. Hence, we conclude that preexciting suprathermal electrons alone would not solve the problem of electron acceleration at radio relic shocks.

  • PDF