• 제목/요약/키워드: active staining

검색결과 211건 처리시간 0.029초

Role of Disulfide Bond of Arylsulfate Sulfotransferase in the Catalytic Activity

  • Kwon, Ae-Ran;Choi, Eung-Chil
    • Archives of Pharmacal Research
    • /
    • 제28권5호
    • /
    • pp.561-565
    • /
    • 2005
  • Bacterial arylsulfate sulfotransferase (ASST) catalyzes the transfer of sulfate group from a phenyl sulfate ester to a phenolic acceptor. The promoter region and the transcripti on start sites of Enterobacter amnigenus astA have been determined by primer extension analysis. Northern blot analysis resolved two mRNA species with lengths of 3.3 and 2.0 kb, which correspond to the distances between the transcriptional initiation sites and the two inverted repeat sequences (IRSs). By length, the 3.3 kb RNA could comprise the three-gene (astA with dsbA and dsbB) operon. ASST has three highly conserved cysteine residues. Reducing and non-reducing SDS-PAGE and activity staining showed that disulfide bond is needed for the activity of the enzyme. To identify the cysteine residues responsible for the disulfide bond formation, a series of Cys to Ser mutants has been constructed and the enzymatic activity was measured. Based on the results, we assumed that the first cysteine (Cys349) might be involved in disulfide bond mainly with the second cysteine (Cys445) and result in active conformation.

녹두의 하배축에서 분양한 Alkaline lnvertase의 정제와 특성 (Purification and Characterization of Alkaline Invertase from the Hypocotyls of Mung Bean (Phaseolus raiatus L.))

  • Young-Sang Kim
    • Journal of Plant Biology
    • /
    • 제38권4호
    • /
    • pp.349-357
    • /
    • 1995
  • The alkaline invertase ($\beta$-D-fructofuranoside fructohydrolase, EC 3.2.1.26) was isolated and characterized from the hypocotyls of mung bean (Phaseolus radiatus L.). The enzyme was purified by consecutive step using diethylaminoethyl (DEAE)-cellulose anion exchange, 1st Sephadex G-200, DEAE-Sephadex A50 and 2nd Sephadex G-200 chromatography. The overall purification was about 77-fold with a yield of about 6%. The finally purified enzyme exhibited a specific activity of about 48 $\mu$mol of glucose produced mg-1 protein min-1 at pH 7.0 and appeared to be a single protein by nondenaturing polyacrylamide gel electrophoresis (PAGE). The enzyme had the native molecular weight of 450 kD and subunits molecular weight of 63 kD and 38 kD as estimated by Sephadex G-200 chromatography and SDS-PAGE, respectively, suggesting that the enzyme is a heteromultimeric protein composed of two types of subunits. On the other hand, the enzyme appeared to be not a glycoprotein according to the results of Con A chromatography and glycoprotein staining. The enzyme had a Km for sucrose of 19.7 mM at pH 7.0 and maximum activity around pH 7.5. The enzyme was most active with sucrose as substrate, compared to raffinose, cellobiose, maltose and lactose. These results indicate the alkaline invertase is a $\beta$-fructofuranosidase.

  • PDF

착상전 생쥐배아에서 c-myc 유전자의 발현 (Expression of c-myc Proto-oncogene in Preimplantation Mouse Embryos)

  • 정성진;강해묵강성구김경진
    • 한국동물학회지
    • /
    • 제38권2호
    • /
    • pp.196-203
    • /
    • 1995
  • The c-myc proto-oncogene, one of the immediately earlY genes, is expressed in various mammalian cell types and heavily involved in the regulation of cell proliferation and differentiation. To determine endogeneous expression pattern of c-myc gene in preimpBantation mouse embwos, we employed a reverse transcription coupled to polvrnerase chain reaction (RT-PCR). Transcript of c-myc was detected at fertilized embryos as a maternal transcript. At the early two-cell stave, transcript of c-myc gene was hardly detected, bu, appeared at late two-cell embryos as a zygotic transcript. The level of c-myc expresion was increased at later stases and peaked at blastocvst stage. To examine the functional role of promoter region for c-myc gene transcription, we fused the 5'upstream region (1.8 kb) including econ 1 of c-myc genomic DNA with E. coli lacE gene fnamed as pcMYC-laczl. pcMYC-lacZ was microiniected into the pronscleus of mouse one-cell embryovs, and p·salactosidase activity was determined tv histochemical staining with X-gal at different stases. f-galactosidase activity was detected only at blastocyst, but not at the earlier stage embryos. This result indicates that c-myc gene is transcriptionallv active during mouse preimplantation development.

  • PDF

감물염색 직물의 추출물에 의한 항알러지 활성의 분석 (Analysis of Anti-Allergic Activities by Extracts from Persimmon Sap-Stained Rayon and Cotton Fabrics)

  • 이상한
    • 생명과학회지
    • /
    • 제20권5호
    • /
    • pp.794-798
    • /
    • 2010
  • 알러지성 피부염은 현재 영유아 4인 중 1명이 발병할 정도로 심각한 질환으로 보고되어 있다. 본 연구는 청도감물염색을 한 직물 2종(인견과 면)의 물 추출물이 알러지성 피부염 유도 동물모델에서 피부의 표피에 면역관련의 세포의 수를 감소시킴을 H&E 염색으로 확인하였으며, 알러지성 피부염에 직접 관련이 있는 분자표적인 $CD4^+$ cell의 분포를 비교하여 본 결과, 유의성 있게 항알러지성 피부염 활성을 보유하고 있는 것을 확인하였다. MMP-2와 MMP-9의 면역조직화학적 분석을 수행한 결과, 이들의 발현도 감소함으로 감물염색에 사용된 감의 유용성분 예를 들면 폴리페놀 성분 등이 알러지성 피부염의 억제활성에 관련이 있을 것으로 추정된다.

Extract of high hydrostatic pressure-treated danshen (Salvia miltiorrhiza) ameliorates atherosclerosis via autophagy induction

  • Ko, Minjeong;Oh, Goo Taeg;Park, Jiyong;Kwon, Ho Jeong
    • BMB Reports
    • /
    • 제53권12호
    • /
    • pp.652-657
    • /
    • 2020
  • Danshen (Salvia miltiorrhiza) is a traditional medicinal plant widely used in Asian countries for its pharmacological activities (e.g., amelioration of cardiovascular diseases). In this study, we investigated the anti-atherosclerotic activity of raw danshen root extract prepared using high hydrostatic pressure (HHP) at 550 MPa for 5 min and hot water extraction. This method was useful for elimination of bacteria from cultured danshen plants and for better extraction yield of active principles. The HHP-treated danshen extract (HDE) inhibited proliferation of human umbilical vein endothelial cells (HUVECs) and induced autophagy that was assessed by LC3 conversion and p62 degradation. HDE suppressed foam cell formation in oxLDL-induced RAW264.7 macrophages; lysosomal activity simultaneously increased, measured by acridine orange staining. HDE also reduced atherosclerotic plaque development in vivo in apolipoprotein E knock-out (ApoE-/-) mice fed a high cholesterol diet. Taken together, these results indicated that HDE exhibited anti-atherosclerotic activity via autophagy induction.

Anticancer Activity of Bispidinone Derivative by Induction of Apoptosis

  • Lee, Man Gi;Kwon, Ryong
    • 대한의생명과학회지
    • /
    • 제26권4호
    • /
    • pp.336-343
    • /
    • 2020
  • The present study was carried out to investigate the possibility that bispidinone derivative makes anticancer drug availability to human cervical carcinoma cell. The B8 has the lowest IC50 value among B8, B9 and B10 which are bispidinone analogue with bromide. According to cytotoxic test through WST-8 assay, B8 shows the most magnificent cytotoxicity effectiveness with 76 μM of IC50 value. In human cervical carcinoma cell treated with B8, it noticeably controlled cellular multiplication by increase of concentration and time. Furthermore, morphological changes like cellular shrink, disruption and nuclear condensation, feature of apoptosis, are observed. Annexin V-FITC/PI double staining assay test proved that B8 can cause apoptosis. Moreover, after treatment with 76 μM of B8, flow cytometry analysis shows that increase of active oxygen species are induced and membrane potential in mitochondria is decreased. Manifestation of Bcl-2 family and caspase cascades protein provides evidence that B8 induces apoptosis through mitochondria and caspase-related pathway. Taken together, we suggested that B8 reduced membrane potential in mitochondria and induce apoptosis through the pathway depended on mitochondria and caspase.

Disruption of Established Bacterial and Fungal Biofilms by a Blend of Enzymes and Botanical Extracts

  • Gitte S. Jensen;Dina Cruickshank;Debby E. Hamilton
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권6호
    • /
    • pp.715-723
    • /
    • 2023
  • Microbial biofilms are resilient, immune-evasive, often antibiotic-resistant health challenges, and increasingly the target for research into novel therapeutic strategies. We evaluated the effects of a nutraceutical enzyme and botanical blend (NEBB) on established biofilm. Five microbial strains with known implications in chronic human illnesses were tested: Candida albicans, Staphylococcus aureus, Staphylococcus simulans (coagulase-negative, penicillin-resistant), Borrelia burgdorferi, and Pseudomonas aeruginosa. The strains were allowed to form biofilm in vitro. Biofilm cultures were treated with NEBB containing enzymes targeted at lipids, proteins, and sugars, also containing the mucolytic compound N-acetyl cysteine, along with antimicrobial extracts from cranberry, berberine, rosemary, and peppermint. The post-treatment biofilm mass was evaluated by crystal-violet staining, and metabolic activity was measured using the MTT assay. Average biofilm mass and metabolic activity for NEBB-treated biofilms were compared to the average of untreated control cultures. Treatment of established biofilm with NEBB resulted in biofilm-disruption, involving significant reductions in biofilm mass and metabolic activity for Candida and both Staphylococcus species. For B. burgdorferi, we observed reduced biofilm mass, but the remaining residual biofilm showed a mild increase in metabolic activity, suggesting a shift from metabolically quiescent, treatment-resistant persister forms of B. burgdorferi to a more active form, potentially more recognizable by the host immune system. For P. aeruginosa, low doses of NEBB significantly reduced biofilm mass and metabolic activity while higher doses of NEBB increased biofilm mass and metabolic activity. The results suggest that targeted nutraceutical support may help disrupt biofilm communities, offering new facets for integrative combinational treatment strategies.

20(S)-protopanaxadiol promotes the migration, proliferation, and differentiation of neural stem cells by targeting GSK-3β in the Wnt/GSK-3β/β-catenin pathway

  • Lin, Kaili;Liu, Bin;Lim, Sze-Lam;Fu, Xiuqiong;Sze, Stephen C.W.;Yung, Ken K.L.;Zhang, Shiqing
    • Journal of Ginseng Research
    • /
    • 제44권3호
    • /
    • pp.475-482
    • /
    • 2020
  • Background: Active natural ingredients, especially small molecules, have recently received wide attention as modifiers used to treat neurodegenerative disease by promoting neurogenic regeneration of neural stem cell (NSC) in situ. 20(S)-protopanaxadiol (PPD), one of the bioactive ingredients in ginseng, possesses neuroprotective properties. However, the effect of PPD on NSC proliferation and differentiation and its mechanism of action are incompletely understood. Methods: In this study, we investigated the impact of PPD on NSC proliferation and neuronal lineage differentiation through activation of the Wnt/glycogen synthase kinase (GSK)-3β/β-catenin pathway. NSC migration and proliferation were investigated by neurosphere assay, Cell Counting Kit-8 assay, and EdU assay. NSC differentiation was analyzed by Western blot and immunofluorescence staining. Involvement of the Wnt/GSK3β/β-catenin pathway was examined by molecular simulation and Western blot and verified using gene transfection. Results: PPD significantly promoted neural migration and induced a significant increase in NSC proliferation in a time- and dose-dependent manner. Furthermore, a remarkable increase in anti-microtubule-associated protein 2 expression and decrease in nestin protein expression were induced by PPD. During the differentiation process, PPD targeted and stimulated the phosphorylation of GSK-3β at Ser9 and the active forms of β-catenin, resulting in activation of the Wnt/GSK-3β/β-catenin pathway. Transfection of NSCs with a constitutively active GSK-3β mutant at S9A significantly hampered the proliferation and neural differentiation mediated by PPD. Conclusion: PPD promotes NSC proliferation and neural differentiation in vitro via activation of the Wnt/GSK-3β/β-catenin pathway by targeting GSK-3β, potentially having great significance for the treatment of neurodegenerative diseases.

백색부후균 Phanerochaete chrysosporium에서 유래한 Manganese Peroxidase Gene(mnp5)의 Pichia pastoris에서의 이종발현 (Expression of a Manganese Peroxidase Gene (mnp5) from White rot fungus Phanerochaete chrysosporium in the Pichia pastoris)

  • 이재원;양인;五十嵐圭日子;鮫島正浩;최인규
    • Journal of the Korean Wood Science and Technology
    • /
    • 제33권4호통권132호
    • /
    • pp.45-52
    • /
    • 2005
  • 백색부후균 Phanerochaete chrysosporium으로부터 유래한 Manganese peroxidase (mnp5)를 methylotrophic yeast인 Pichia pastoris에서 이종 발현을 하였다. 이종발현으로부터 얻어진 단백질은 클로닝으로부터 예상되어지는 분자량보다 높은 분자량인 45 kDa으로 나타났다. 이것은 mnp5가 가지고 있는 glycosylation site에 의한 것이며, N-linked hyperglycosylation이 효소 활성에 영향을 미치는지를 site direct mutation에 의해 확인하였다. Sodium dodesyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)와 Coomassie Brilliant Blue (CBB) 염색에 의해 분자량을 확인한 결과 약 37 kDa으로 나타났으며, 효소활성을 측정한 결과 glycosylation이 효소 활성에 영향을 미치지 않는 것으로 나타났다. 따라서 본 연구로부터 P. pastoris에서 mnp5의 이종발현이 성공적으로 이루어졌으며 이러한 결과로부터 heme을 포함하고 있는 단백질의 이종발현 생산의 가능성을 보여주었다.

Bacillus subtilis JK-56이 생산하는 chitinase isozyme의 정제와 특성 규명 (Purification and characterization of the chitinase from Bacillus subtilis JK-56)

  • 전홍기;김낙원;정영기
    • 생명과학회지
    • /
    • 제12권1호
    • /
    • pp.77-86
    • /
    • 2002
  • 토양으로부터 chitinase를 생성하는 균주를 분리하여 동정한 결과 Bacillus subtilis로 판명되었으며, 분리한 균주를 Bacillus subtilis JK-56이라 명명하였다. B. subtilis JK-56의 chitinase 생산 최적 조건을 검토한 결과 1% chitin, 0.5% polypeptone, 0.1% KCI, 0.05% MnS $O_4$.4$H_2O$이며 초발 pH 7.0, 배양온도 37$^{\circ}C$에서 가장 많은 효소를 생산하였다. 본 균주가 생산하는 chitinase를 정제하기 위해서 native-PAGE를 이용해 효소활성 band를 확인한 결과, 1개의 강한 활성 band와 2개의 약한 활성 band를 가지는 isozyme으로 확인되었다. 확인된 isozyme을 정제한 결과, isozyme 중 1개의 강한 활성 band를 정제하였고 정제된 효소를 Chi-56A라고 명명하였다 Chi-56A의 효소 특성에 관해서 실험한 결과 분자량은 약 53kDa, pI는 4.3으로 확인되었다. 본 효소는 $65^{\circ}C$까지 상당히 안정하였으며 효소의 최대활성 온도도 $65^{\circ}C$로 확인되는 등 열에 대해 상당히 안정한 효소로 확인되었다. Collidal chitin에 대한 정제효소 Chi-56A의 $K_{m}$ 값은 17.33g/L였다. 그리고 pH 6.0에서 최대의 활성을 나타내었고, 산성범위보다 알칼리범위에서 안정한 것으로 나타났다. 또한 $Mn^{2+}$ 존재 하에서 높은 활성을 나타내었고 C $O^{2+}$$Mg^{2+}$ 존재 하에서도 활성이 약간 증가한 반면에 H $g^{2+}$ 존재 하에서는 상당한 저해를 받았다. Chito 올리고당에 대한 분해 산물을 HPLC로 확인해 본 결과 짝수개의 올리고당의 분해산물은 (GlcNAc)$_2$만을 생산하였고 홀수개의 올리고당에 대해서는 GlcNAc와 (GlcNAc)$_2$를 생산하는 것으로 비환원성 말단으로부터 이당체인 diacetyl chitobiose ((GlcNAc)$_2$)를 생산하는 exo형 chitinase로 추정 된다.