• Title/Summary/Keyword: active sensing approach

Search Result 39, Processing Time 0.03 seconds

Developing an integrated software solution for active-sensing SHM

  • Overly, T.G.;Jacobs, L.D.;Farinholt, K.M.;Park, G.;Farrar, C.R.;Flynn, E.B.;Todd, M.D.
    • Smart Structures and Systems
    • /
    • v.5 no.4
    • /
    • pp.457-468
    • /
    • 2009
  • A novel approach for integrating active sensing data interrogation algorithms for structural health monitoring (SHM) applications is presented. These algorithms cover Lamb wave propagation, impedance methods, and sensor diagnostics. Contrary to most active-sensing SHM techniques, which utilize only a single signal processing method for damage identification, a suite of signal processing algorithms are employed and grouped into one package to improve the damage detection capability. A MATLAB-based user interface, referred to as HOPS, was created, which allows the analyst to configure the data acquisition system and display the results from each damage identification algorithm for side-by-side comparison. By grouping a suite of algorithms into one package, this study contributes to and enhances the visibility and interpretation of the active-sensing methods related to damage identification. This paper will discuss the detailed descriptions of the damage identification techniques employed in this software and outline future issues to realize the full potential of this software.

Grouting compactness monitoring of concrete-filled steel tube arch bridge model using piezoceramic-based transducers

  • Feng, Qian;Kong, Qingzhao;Tan, Jie;Song, Gangbing
    • Smart Structures and Systems
    • /
    • v.20 no.2
    • /
    • pp.175-180
    • /
    • 2017
  • The load-carrying capacity and structural behavior of concrete-filled steel tube (CFST) structures is highly influenced by the grouting compactness in the steel tube. Due to the invisibility of the grout in the steel tube, monitoring of the grouting progress in such a structure is still a challenge. This paper develops an active sensing approach with combined piezoceramic-based smart aggregates (SA) and piezoceramic patches to monitor the grouting compactness of CFST bridge structure. A small-scale steel specimen was designed and fabricated to simulate CFST bridge structure in this research. Before casting, four SAs and two piezoceramic patches were installed in the pre-determined locations of the specimen. In the active sensing approach, selected SAs were utilized as actuators to generate designed stress waves, which were detected by other SAs or piezoceramic patch sensors. Since concrete functions as a wave conduit, the stress wave response can be only detected when the wave path between the actuator and the sensor is filled with concrete. For the sake of monitoring the grouting progress, the steel tube specimen was grouted in four stages, and each stage held three days for cement drying. Experimental results show that the received sensor signals in time domain clearly indicate the change of the signal amplitude before and after the wave path is filled with concrete. Further, a wavelet packet-based energy index matrix (WPEIM) was developed to compute signal energy of the received signals. The computed signal energies of the sensors shown in the WPEIM demonstrate the feasibility of the proposed method in the monitoring of the grouting progress.

AN IMAGE SEGMENTATION LEVEL SET METHOD FOR BUILDING DETECTION

  • Konstantinos, Karantzalos;Demetre, Argialas
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.610-614
    • /
    • 2006
  • In this paper the advanced method of geodesic active contours was developed for the task of building detection from aerial and satellite images. Automatic extraction of man-made structures including buildings, building blocks or roads from remote sensing data is useful for land use mapping, scene understanding, robotic navigation, image retrieval, surveillance, emergency management procedures, cadastral etc. A level set method based on a region-driven segmentation model was implemented with which building boundaries were detected, through this curve propagation technique. The essence of this approach is to optimize the position and the geometric form of the curve by measuring information along that curve, and within the regions that compose the image partition. To this end, one can consider uniform intensities inside objects and the background. Thus, given an initial position of the curve, one can determine global, region-driven functions and provide a statistical description of the inside and outside object area. The calculus of variations and a gradient descent method was used to optimize the variational functional by an iterative steady state process. Experimental results demonstrate the potential of the proposed processing scheme.

  • PDF

Predictive model of fatigue crack detection in thick bridge steel structures with piezoelectric wafer active sensors

  • Gresil, M.;Yu, L.;Shen, Y.;Giurgiutiu, V.
    • Smart Structures and Systems
    • /
    • v.12 no.2
    • /
    • pp.97-119
    • /
    • 2013
  • This paper presents numerical and experimental results on the use of guided waves for structural health monitoring (SHM) of crack growth during a fatigue test in a thick steel plate used for civil engineering application. Numerical simulation, analytical modeling, and experimental tests are used to prove that piezoelectric wafer active sensor (PWAS) can perform active SHM using guided wave pitch-catch method and passive SHM using acoustic emission (AE). AE simulation was performed with the multi-physic FEM (MP-FEM) approach. The MP-FEM approach permits that the output variables to be expressed directly in electric terms while the two-ways electromechanical conversion is done internally in the MP-FEM formulation. The AE event was simulated as a pulse of defined duration and amplitude. The electrical signal measured at a PWAS receiver was simulated. Experimental tests were performed with PWAS transducers acting as passive receivers of AE signals. An AE source was simulated using 0.5-mm pencil lead breaks. The PWAS transducers were able to pick up AE signal with good strength. Subsequently, PWAS transducers and traditional AE transducer were applied to a 12.7-mm CT specimen subjected to accelerated fatigue testing. Active sensing in pitch catch mode on the CT specimen was applied between the PWAS transducers pairs. Damage indexes were calculated and correlated with actual crack growth. The paper finishes with conclusions and suggestions for further work.

Control Algorithms of Active Suspension Systems for Ride Comfort Improvement (승차감 향상을 위한 액티브서스펜션의 제어알고리즘)

  • Tak, Tae-Oh
    • Journal of Industrial Technology
    • /
    • v.12
    • /
    • pp.61-67
    • /
    • 1992
  • Two control algorithms of active suspension system for improving ride quality are described and their effectiveness is assessed using a quarter car model. Optimal control approach demonstrates great flexibility to meet various running conditions of a vehicle. However, in order to fully utilize the power of optimal control apporach, accurate estimation of the state variables is essential. Simple, yet effective sky-hook algorithm seems to be well suited for real application because of its much relaxed requirements on sensing the stste variables and relative easiness to implment.

  • PDF

Sensorless Algorithm of Brushless DC Motors Using Terminal Voltage of the One Phase (한상의 단자전압을 이용한 BLDC 전동기 센서리스 알고리즘)

  • Yoon, Yong-Ho;Won, Chung-Yuen
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.2
    • /
    • pp.135-140
    • /
    • 2010
  • This paper presents a sensorless speed control of BLDC Motor using terminal voltage of the one phase. Rotor position information is extracted by indirectly sensing the back EMF from only one of the three terminal voltages for a three-phase BLDC motor. Depending on the terminal voltage sensing rotor position, active filter is used for position information. This leads to a significant reduction in the component device of the sensorless circuit. Therefore this is a advantage for the cost saving and size reduction. With indirect sensing methods based on detection of the terminal voltage that require active filtering, the position information needs the six divider section by PLL circuit, the binary counter and johnson counter by the EPLD. Finally, this algorithm can estimate the rotor position information similar to Hall-sensor sticked the three-phase BLDC motor. As a result, the method described that it is not sensitive to filtering delays, allowing the motor to achieve a good performance over a wide speed range. In addition, a simple starting method and a speed estimation approach are also proposed. Experimental and simulation results are included to verify the proposed scheme.

Keypoint-based Deep Learning Approach for Building Footprint Extraction Using Aerial Images

  • Jeong, Doyoung;Kim, Yongil
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.1
    • /
    • pp.111-122
    • /
    • 2021
  • Building footprint extraction is an active topic in the domain of remote sensing, since buildings are a fundamental unit of urban areas. Deep convolutional neural networks successfully perform footprint extraction from optical satellite images. However, semantic segmentation produces coarse results in the output, such as blurred and rounded boundaries, which are caused by the use of convolutional layers with large receptive fields and pooling layers. The objective of this study is to generate visually enhanced building objects by directly extracting the vertices of individual buildings by combining instance segmentation and keypoint detection. The target keypoints in building extraction are defined as points of interest based on the local image gradient direction, that is, the vertices of a building polygon. The proposed framework follows a two-stage, top-down approach that is divided into object detection and keypoint estimation. Keypoints between instances are distinguished by merging the rough segmentation masks and the local features of regions of interest. A building polygon is created by grouping the predicted keypoints through a simple geometric method. Our model achieved an F1-score of 0.650 with an mIoU of 62.6 for building footprint extraction using the OpenCitesAI dataset. The results demonstrated that the proposed framework using keypoint estimation exhibited better segmentation performance when compared with Mask R-CNN in terms of both qualitative and quantitative results.

High Resolution Space Images for Hazardous Waste Area Monitoring with Application of Remote Sensing and GIS

  • Salahova, Saida
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.1
    • /
    • pp.42-47
    • /
    • 2008
  • One of the main cases of the desertification impact is the negative contribution of human activities that worsen environment. There are historical facts of inability and excessive activities which destroyed the civilizations. The basic difference is only in the tempo and scales of civilization collapse. Human pressure was accumulated within the centuries and millennia due to the extremely active economic activities. But today it covers only the decades. Presently the process of desertification has a global scale. There are huge factors of Earth aridization as an increase of the quantity of C02 and atmospheric dust and bloom. This process related not only to the arid areas. Obviously a comprehensive approach of development of territories, particularly arid areas is very important. The use of the satellite information and technologies of remote sensing data processing can take a significant place for decision-makers for calculation and estimation of the environment impacts.

Sea Ice Type Classification with Optical Remote Sensing Data (광학영상에서의 해빙종류 분류 연구)

  • Chi, Junhwa;Kim, Hyun-cheol
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_2
    • /
    • pp.1239-1249
    • /
    • 2018
  • Optical remote sensing sensors provide visually more familiar images than radar images. However, it is difficult to discriminate sea ice types in optical images using spectral information based machine learning algorithms. This study addresses two topics. First, we propose a semantic segmentation which is a part of the state-of-the-art deep learning algorithms to identify ice types by learning hierarchical and spatial features of sea ice. Second, we propose a new approach by combining of semi-supervised and active learning to obtain accurate and meaningful labels from unlabeled or unseen images to improve the performance of supervised classification for multiple images. Therefore, we successfully added new labels from unlabeled data to automatically update the semantic segmentation model. This should be noted that an operational system to generate ice type products from optical remote sensing data may be possible in the near future.

Harnessing sparsity in lamb wave-based damage detection for beams

  • Sen, Debarshi;Nagarajaiah, Satish;Gopalakrishnan, S.
    • Structural Monitoring and Maintenance
    • /
    • v.4 no.4
    • /
    • pp.381-396
    • /
    • 2017
  • Structural health monitoring (SHM) is a necessity for reliable and efficient functioning of engineering systems. Damage detection (DD) is a crucial component of any SHM system. Lamb waves are a popular means to DD owing to their sensitivity to small damages over a substantial length. This typically involves an active sensing paradigm in a pitch-catch setting, that involves two piezo-sensors, a transmitter and a receiver. In this paper, we propose a data-intensive DD approach for beam structures using high frequency signals acquired from beams in a pitch-catch setting. The key idea is to develop a statistical learning-based approach, that harnesses the inherent sparsity in the problem. The proposed approach performs damage detection, localization in beams. In addition, quantification is possible too with prior calibration. We demonstrate numerically that the proposed approach achieves 100% accuracy in detection and localization even with a signal to noise ratio of 25 dB.