• Title/Summary/Keyword: active pressure

Search Result 954, Processing Time 0.024 seconds

PERFORMANCE AND EXHAUST GAS CHARACTERISTICS ON DIESEL PARTICULATE FILTER TRAP

  • Oh, S.K.;Baik, D.S.;Han, Y.C.
    • International Journal of Automotive Technology
    • /
    • v.3 no.3
    • /
    • pp.111-115
    • /
    • 2002
  • Suddenly increasing numbers of automobiles result in making worse air pollution problems. In particular, the emissions from automobiles affect badly on atmosphere. Nowadays, research on catalyst converter and filter trap as a modem technology is very active because PM is designated as a major cancer material and stringent regulations on this are necessary and required. The ceramic filter is very efficient in reducing particular materials up to 80-90% and is evaluated as a very efficient after-treatment technology. However, it comes with decreased engine performance due to increased back-pressure occurred by thermal crack. In order to solve these problems, several methods are proposed such as fuel additive, electric heater and burner types. This experimental study has been conducted with equipped and unequipped a ceramic filter on a displacement 11,000cc diesel engine and compared in terms of engine performance and emission. To measure the emission, D-13 mode is applied and measured quantities of the exhaust gases, particularly in CO, HC, PM, and NOx. Therefore, this research is focused on the basic mechanism and characteristics on harmful materials generated by ceramic filter.

Successful TAE after DCS for Active Arterial Bleeding from Blunt Hepatic Injury in a Child: A Case Report

  • Park, Chan Ik;Lee, Sang Bong;Yeo, Kwang Hee;Lee, Seungchan;Park, Sung Jin;Kim, Ho Hyun;Kim, Jae Hun;Kim, Chang Won;Park, Chan Yong
    • Journal of Trauma and Injury
    • /
    • v.29 no.2
    • /
    • pp.47-50
    • /
    • 2016
  • Transcatheter arterial embolization (TAE) for blunt hepatic injury in children is not common and is especially rare after damage control surgery (DCS). We report a successful TAE after DCS on a child for massive bleeding from the left hepatic artery due to a motor vehicle accident. The car (a sport utility vehicle) ran over the chest and abdomen of a 4-year-old boy. On arrival, initial vital signs were as follows: blood pressure, 70/40 mmHg; heart rate, 149/min; temperature, $36.7^{\circ}C$; respiratory rate, 38/min. After resuscitation, computed tomography was done, and a suspicious contrast leakage from a branch of the left hepatic artery and a spleen injury (grade V) were found. TAE was performed successfully after DCS for a liver injury.

A Study on the Noise Reduction of a Portable Fuel Cell System (휴대용 연료전지 시스템의 소음 저감에 대한 연구)

  • Jeon, In-Youl;Bae, Joon-Soo;Oh, Min-Jung;Choi, Sang-Hyeon;Lee, Choong-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.858-861
    • /
    • 2006
  • In this paper, a study on the noise reduction in a mobile fuel cell system is presented. Among various fuel cell systems around 20W capacities designed for mobile electronic devices, the active direct methanol fuel cell (DMFC) systems have been recently developed. In such systems, the primary noise source is the air pump which provides sufficient air flow ($5{\sim}6$ liter/min) for electrochemical reaction with methanol fuel while the noise contributions from other auxiliary parts are relatively small. Especially, the discrete noise tones generated by the air pump are dominant and those frequency peaks related to the rotor harmonics are needed to be suppressed by a silencer. Therefore. the Herschel/Quinke (HQ) tubes, which use the out-of-phase cancellation of acoustic waves propagating through direct and indirect pathways, are applied to the inlet of the air pump. Performance of noise reduction with HQ silencer is analytically estimated by calculating the transmission. The length and number of thin HQ tubes are optimized to decrease the radiated noise. As a result, the sound pressure level could be successfully reduced by about 10 dB after applying three serially connected HQ tubes.

  • PDF

Design of Nanocluster Based Material with Catalytic Properties

  • Tadachika Nakayama;Kim, Chang-Yeoul;Tohru Sekino;Choa, Yong-Ho;Takafumi Kusunose;Yamato Hayashi;Koichi Niibara
    • Journal of Powder Materials
    • /
    • v.8 no.3
    • /
    • pp.197-200
    • /
    • 2001
  • Modified inert gas condensation method was used to produce the nanocluster composites of $CuO/CeO_2$. High-resolution TEM, SEM and catalytic measurements have been used to characterize the samples and study the synergistic effect between the CuO phase and $CeO_2$(ceria) support. By varying the He pressure, the heating temperature and configuration of the heating boats inside the modified gas condensation chamber, nanoclusters of varying sizes, shapes and composition can be produced. The composition and nanostructured morphology were shown to influence the catalytic properties of the system. A copper content around 10 at% with a morphology that favors high-energy surfaces of ceria is shown to be beneficial for a high catalytic activity.

  • PDF

Matrix completion based adaptive sampling for measuring network delay with online support

  • Meng, Wei;Li, Laichun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.7
    • /
    • pp.3057-3075
    • /
    • 2020
  • End-to-end network delay plays an vital role in distributed services. This delay is used to measure QoS (Quality-of-Service). It would be beneficial to know all node-pair delay information, but unfortunately it is not feasible in practice because the use of active probing will cause a quadratic growth in overhead. Alternatively, using the measured network delay to estimate the unknown network delay is an economical method. In this paper, we adopt the state-of-the-art matrix completion technology to better estimate the network delay from limited measurements. Although the number of measurements required for an exact matrix completion is theoretically bounded, it is practically less helpful. Therefore, we propose an online adaptive sampling algorithm to measure network delay in which statistical leverage scores are used to select potential matrix elements. The basic principle behind is to sample the elements with larger leverage scores to keep the traits of important rows or columns in the matrix. The amount of samples is adaptively decided by a proposed stopping condition. Simulation results based on real delay matrix show that compared with the traditional sampling algorithm, our proposed sampling algorithm can provide better performance (smaller estimation error and less convergence pressure) at a lower cost (fewer samples and shorter processing time).

Experimental and Numerical Study on Behavior of Impinging Spray according to Ambient Temperature (분위기 온도에 따른 충돌 분무의 거동에 대한 실험 및 수치적 연구)

  • Shim, Young-Sam;Choi, Gyung-Min;Kim, Duck-Jool
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.4
    • /
    • pp.124-131
    • /
    • 2007
  • The numerical study on behavior of impinging spray from high-pressure swirl injector under various ambient temperatures was performed by using spray vaporization model and spray-wall impingement model implemented in modified KIVA code, and these spray models were estimated by comparison with experimental results. To compute the spray-wall impingement process, the Gosman model, which is based on the droplet behavior after impingement determined by experimental correlations, was used. The modified Abramzon and Sirignano model, that includes the effects of variable thermodynamic properties and non-unitary Lewis number in the gas film, was adapted for spray vaporization process. The exciplex fluorescence measurements were also conducted for comparison. The experimental and numerical analysis were carried out at the ambient pressures of 0.1 MPa and at the ambient temperature of 293 K and 473 K, and the spray characteristics, such as spray-wall impingement process, gas velocity field, SMD and vapor concentration, were acquired. It was found that the impinging spray develops active and SMD is small at vaporization conditions.

Optimal sensing period in cooperative relay cognitive radio networks

  • Zhang, Shibing;Guo, Xin;Zhang, Xiaoge;Qiu, Gongan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.12
    • /
    • pp.5249-5267
    • /
    • 2016
  • Cognitive radio is an efficient technique to improve spectrum efficiency and relieve the pressure of spectrum resources. In this paper, we investigate the spectrum sensing period in cooperative relay cognitive radio networks; analyze the relationship between the available capacity and the signal-to-noise ratio of the received signal of second users, the target probability of detection and the active probability of primary users. Finally, we derive the closed form expression of the optimal spectrum sensing period in terms of maximum throughput. We simulate the probability of false alarm and available capacity of cognitive radio networks and compare optimal spectrum sensing period scheme with fixed sensing period one in these performance. Simulation results show that the optimal sensing period makes the cognitive networks achieve the higher throughput and better spectrum sensing performance than the fixed sensing period does. Cooperative relay cognitive radio networks with optimal spectrum sensing period can achieve the high capacity and steady probability of false alarm in different target probability of detection. It provides a valuable reference for choosing the optimal spectrum sensing period in cooperative relay cognitive radio networks.

Development of cryogenic free-piston reciprocating expander utilizing phase controller

  • Cha, Jeongmin;Park, Jiho;Kim, Kyungjoong;Jeong, Sangkwon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.2
    • /
    • pp.42-47
    • /
    • 2016
  • A free-piston reciprocating expander is a device which operates without any mechanical linkage to a stationary part. Since the motion of the floating piston is only controlled by the pressure difference at two ends of the piston, this kind of expander may indispensably require a sophisticated active control system equipped with multiple valves and reservoirs. In this paper, we have suggested a novel design that can further reduce complexity of the previously developed cryogenic free-piston expander configuration. It is a simple replacement of both multiple valves and reservoirs by a combination of an orifice valve and a reservoir. The functional characteristic of the integrated orifice-reservoir configuration is similar to that of a phase controller applied in a pulse tube refrigerator so that we designate the one as a phase controller. Depending on the orifice valve size in the phase controller, the different PV work which affects the expander performance is generated. The numerical model of this unique free-piston reciprocating expander utilizing a phase controller is established to understand and analyze quantitatively the performance variation of the expander under different valve timing and orifice valve size. The room temperature experiments are carried out to examine the performance of this newly developed cryogenic expander.

Numerical Study of AGN Jet Propagation with Two Dimensional Relativistic Hydrodynamic Code

  • MIZUTA AKIRA;YAMADA SHOICHI;TAKABE HIDEAKI
    • Journal of The Korean Astronomical Society
    • /
    • v.34 no.4
    • /
    • pp.329-331
    • /
    • 2001
  • We investigate the morphology of Active Galactic Nuclei(AGN) jets. AGN jets propagate over kpc $\~$ Mpc and their beam velocities are close to the speed of light. The reason why many jets propagate over so long a distance and sustain a very collimated structure is not well understood. It is argued that some dimensionless parameters, the density and the pressure ratio of the jet beam and the ambient gas, the Mach number of the beam, and relative speed of the beam compared to the speed of light, are very useful to understand the morphology of jets namely, bow shocks, cocoons, nodes etc. The role of each parameters has been studied by numerical simulations. But more research is necessary to understand it systematically. We have developed 2D relativistic hydrodynamic code to analyze relativistic jets. We pay attention to the propagation velocity which is derived from 1D momentum balance in the frame of the working surface. We show some of our models and discuss the dependence of the morphology of jets on the parameter.

  • PDF

Electrical Characteristics of Pentacene Thin Film Transistors.

  • Kim, Dae-Yop;Lee, Jae-Hyuk;Kang, Dou-Youl;Choi, Jong-Sun;Kim, Young-Kwan;Shin, Dong-Myung
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.69-70
    • /
    • 2000
  • There are currently considerable interest in the applications of conjugated polymers, oligomers, and small molecules for thin-film electronic devices. Organic materials have potential advantages to be utilized as semiconductors in field-effect transistors and light-emitting diodes. In this study, pentacene thin-film transistors (TFTs) were fabricated on glass substrate. Aluminums were used for gate electrodes. Silicon dioxide was deposited as a gate insulator by PECVD and patterned by reactive ion etching (R.I.E). Gold was used for the electrodes of source and drain. The active semiconductor pentacene layer was thermally evaporated in vacuum at a pressure of about $10^{-8}$ Torr and a deposition rate $0.3{\AA}/s$. The fabricated devices exhibited the field-effect mobility as large as 0.07 $cm^2/V.s$ and on/off current ratio as larger than $10^7$.

  • PDF