• Title/Summary/Keyword: active pressure

Search Result 958, Processing Time 0.029 seconds

Decrease in the Thickness of Capillary Fringe Induced by Surface Active Chemicals in the Groundwater (계면활성물질의 지하수적용에 의한 모관수대 두께의 감소)

  • Kim, Heonki;Shin, Seungyup;Yang, Haewon
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.6
    • /
    • pp.52-58
    • /
    • 2012
  • Capillary fringe divides the groundwater and the vadose zone controlling the diffusive mass transfer of contaminants and gases. The thickness of capillary fringe is of great importance for the rate of contaminant mass transfer across the capillary fringe. Application of surface active chemicals including surfactants and alcohol-based products into the subsurface environment changes the surface tension of the aqueous phase, which in turn, affects the thickness of the capillary fringe. In this study, a bench-scale model was used to assess the quantitative relationship between the surface tension and the thickness of the capillary fringe. An anionic surfactant (Sodium dodecylbenzene sulfonate, SDBS) and an aqueous solution of ethanol were used to control the surface tension of the groundwater. It was found that the thickness of the capillary fringe is directly proportional to the surface tension. The air entry pressures measured by the Tempe Pressure Cell at different surface tensions using SDBS (200 mg/L) and ethanol (20%, v/v) solutions were in good agreement with the thicknesses of the capillary fringe measured by the model. A simple method to correct the conventional Brooks-Corey model for estimating the air entry pressure was also presented.

Effect of TaB2 Addition on the Oxidation Behaviors of ZrB2-SiC Based Ultra-High Temperature Ceramics

  • Lee, Seung-Jun;Kim, Do-Kyung
    • Korean Journal of Materials Research
    • /
    • v.20 no.4
    • /
    • pp.217-222
    • /
    • 2010
  • Zirconium diboride (ZrB2) and mixed diboride of (Zr0.7Ta0.3)B2 containing 30 vol.% silicon carbide (SiC) composites were prepared by hot-pressing at $1800^{\circ}C$. XRD analysis identified the high crystalline metal diboride-SiC composites at $1800^{\circ}C$. The TaB2 addition to ZrB2-SiC showed a slight peak shift to a higher angle of 2-theta of ZrB2, which confirmed the presence of a homogeneous solid solution. Elastic modulus, hardness and fracture toughness were slightly increased by addition of TaB2. A volatility diagram was calculated to understand the oxidation behavior. Oxidation behavior was investigated at $1500^{\circ}C$ under ambient and low oxygen partial pressure (pO2~10-8 Pa). In an ambient environment, the TaB2 addition to the ZrB2-SiC improved the oxidation resistance over entire range of evaluated temperatures by formation of a less porous oxide layer beneath the surface SiO2. Exposure of metal boride-SiC at low pO2 resulted in active oxidation of SiC due to the high vapor pressure of SiO (g), and, as a result, it produced a porous surface layer. The depth variations of the oxidized layer were measured by SEM. In the ZrB2-SiC composite, the thickness of the reaction layer linearly increased as a function of time and showed active oxidation kinetics. The TaB2 addition to the ZrB2-SiC composite showed improved oxidation resistance with slight deviation from the linearity in depth variation.

A Study on Effective Removal Method of Odorant Smell in Natural Gas using Sodium Hypochlorite (차아염소산나트륨을 이용한 천연가스 부취냄새 효과적 탈취방법 연구)

  • Lim, Hyung-Duk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.154-159
    • /
    • 2018
  • Intentional releases occur frequently during maintenance in gas supplying companies, which may result in unpleasant odors, and the possible mistaken belief of a gas accident. Therefore, this study developed a chemical process for effective odorant removal in natural gas using an active chemical that is released intentionally during maintenance and inspection. To develop an effective treatment process for removing the odorant from released natural gas, the effluent concentrations of the odorant in the released gas were measured after a chemical oxidation reaction with a sodium hypochlorite solution in a compact gas scrubbing equipment newly devised in this study. The device was based on a mixed gas vent after the solution inject odorant in the gas through the energy of the venting gas. The cascade combination of a venturi pipe and mixing chamber was developed to remove the odorant effectively from the purposely-released natural gas using an oxidative reaction between the mercaptan compounds (odorant) and the sodium hypochlorite solution. On the other hand, the developed method could be applied limitedly to a relatively small gas release from a low-pressure source. Further studies will be needed to apply the developed process to a large-scale gas release from a high-pressure source.

Kinetics of Oxidative Coupling of Methane over NaCl/ZnO/α-Al2O3 Catalyst (NaCl/ZnO/α-Al2O3 촉매상에서 메탄의 Oxidative Coupling의 속도론적 고찰)

  • Kim, Sang-Chai;Seo, Ho-Joon;Sunwoo, Chang-Shin;Yu, Eui-Yeon
    • Applied Chemistry for Engineering
    • /
    • v.3 no.2
    • /
    • pp.256-265
    • /
    • 1992
  • The kinetics for the oxidative coupling of methane over NaCl(30wt%)/ZnO(60wt%)/${\alpha}-Al_2O_3$ catalyst was investigated, and then the active oxygen species were discussed. The conversion rate of methane was measured at the atmospheric pressure with various combinations of partial pressure of methane and oxygen at temperature range of $650^{\circ}C{\sim}750^{\circ}C$, at conversions less than with 10%. These rate data were then used to verify the proposed Langmuir-Hinshelwood kinetic equation. The rate limiting step appeared to be the formation of the methyl radicals by the reactin of the adsorbed methane and the adsorbed oxygen, which were adsorbed on the different active sites of the catalyst. The activation energy of the methyl radical formation was estimated to be ca. 39 kcal/mol. From the kinetic studies, the oxygen species respolsible for the formation of methyl radicals was proposed to be diatomic oxygen such as $O{_2}{^{2-}}$ or $O_2{^-}$ on the surface.

  • PDF

Effects of Sling and Resistance Rotation Exercises on Pelvic Rotation and Pain in Patients with Chronic Low Back Pain

  • Kim, Dae Hyun;Kim, Tea Ho
    • The Journal of Korean Physical Therapy
    • /
    • v.30 no.5
    • /
    • pp.166-172
    • /
    • 2018
  • Purpose: This study compared the different sling and resistance exercises on pelvic rotation during active straight leg raises (ASLR) and on pain in patients with chronic low back pain (CLBP). Methods: Twenty subjects were divided randomly into a sling group (SG) and a resistance exercise group (REG). Internal oblique (IO), external oblique (EO), rectus abdominis (RA), and rectus femoris (RF) muscle activity; pelvic rotation angle during ASLR; and visual analogue scale, pressure pain threshold were measured. Sling and resistance exercises were then performed for 30 minutes and the measurements taken again. Results: Both groups showed significantly lower RF muscle activity and significantly higher EO and IO muscle activity (p<0.05). The RA muscle activity decreased significantly in the SG, but increased significantly in the REG (p<0.05). The pelvic rotation angle was significantly lower in the SG (p<0.05). The pain press threshold increased significantly in both groups (p<0.05). The visual analogue scale decreased significantly in the SG (p<0.05). Conclusion: Both exercises appear to be beneficial for modifying the muscle activity and pain control in the intervention of CLBP. On the other hand, the sling was more effective in increasing the pressure threshold than resistance exercise, and the pelvic rotation angle was reduced. Therefore, both exercises can help patients with CLBP change their muscle activity and control pain. CLBP patients should use a sling for short periods of time to learn to reduce the pain and control pelvic rotation.

Oxidation of CVD β-SiC in Impurity-Controlled Helium Environment at 950℃ (950℃ 불순물을 포함한 헬륨 환경에서 CVD β-SiC의 산화)

  • Kim, Dae-Jong;Kim, Weon-Ju;Jang, Ji-Eun;Yoon, Soon-Gil;Kim, Dong-Jin;Park, Ji-Yeon
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.5
    • /
    • pp.426-432
    • /
    • 2011
  • The oxidation behavior of CVD ${\beta}$-SiC was investigated for Very High Temperature Gas-Cooled Reactor (VHTR) applications. This study focused on the surface analysis of the oxidized CVD ${\beta}$-SiC to observe the effect of impurity gases on active/passive oxidation. Oxidation test was carried out at $950^{\circ}C$ in the impurity-controlled helium environment that contained $H_2$, $H_2O$, CO, and $CH_4$ in order to simulate VHTR coolant chemistry. For 250 h of exposure to the helium, weight changes were barely measurable when $H_2O$ in the bulk gas was carefully controlled between 0.02 and 0.1 Pa. Surface morphology also did not change based on AFM observation. However, XPS analysis results indicated that a very small amount of $SiO_2$ was formed by the reaction of SiC with $H_2O$ at the initial stage of oxidation when $H_2O$ partial pressure in the CVD ${\beta}$-SiC surface placed on the passive oxidation region. As the oxidation progressed, $H_2O$ consumed and its partial pressure in the surface decreased to the active/passive oxidation transition region. At the steady state, more oxidation did not observable up to 250 h of exposure.

The Effects of Sling and Resistance Exercises on Muscle Activity and Pelvic Rotation Angle During Active Straight Leg Raises and Pain in Patients with Chronic Low Back Pain (만성 허리통증 환자에게 슬링과 기구저항운동이 통증과 능동 뻗은발올림 동안 근활성도, 골반 회전각에 미치는 영향)

  • Kim, Dae-Hyun;Kim, Tae-Ho
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.13 no.4
    • /
    • pp.113-121
    • /
    • 2018
  • PURPOSE: This study was conducted to identify a more effective intervention in sling and resistance exercise for chronic low back pain patients. METHODS: Seventy (70) subjects were randomly divided into the sling group (SG) and resistance exercise group (REG). Muscular activity of the internal oblique (IO), external oblique (EO), rectus abdominis (RA), and pelvic rotation angle during active straight leg raise (ASLR), a pressure pain threshold (PPT) and a visual analog scale (VAS) were measured. Sling and resistance exercises were conducted for 12 weeks. Intermediate measurements were taken after 8 weeks and final measurements were taken after 12 weeks. RESULTS: Both groups showed significantly decreased RA muscle activity and significantly increased IO muscle activity (p<.05). Additionally, EO muscle activity was significantly decreased in the REG, but significantly increased in the SG (p<.05), while the pelvic rotation angle and VAS were significantly decreased in the SG (p<.05). The pressure pain threshold was significantly increased in both groups (p<.05). CONCLUSION: Based on the results of this study, a 12-week intervention seems to be effective at improving back pain in both groups. However, a lower VAS was seen in the sling group after 8 weeks of intervention. Therefore, it is recommended that the sling be applied first when establishing a chronic back pain treatment program to shorten the treatment period and reduce the pain period.

An Experimental Study on Groundwater Head, Injection Water Flowrate and Seepage Water Flowrate under Clogging State of Underground Storage (LPG 지하저장기지 수평 수벽공의 클로깅 현상 발생시 지하수위 및 주입수량, 삼출수량의 변화양상에 관한 실험적 연구)

  • Han Choong-Yong;Kang Joe M.
    • Journal of the Korean Institute of Gas
    • /
    • v.1 no.1
    • /
    • pp.101-105
    • /
    • 1997
  • When the water curtain system is employed to keep the liquefied gas in the underground storage cavern, clogging is observed in borehole. Since this phenomenon causes serious difficulties in managing LPG storage cavern, it needs to detect the degree of clogging accurately under various circumstances. Thus, in this study the active factors of clogging, that is, groundwater head, injection water flowrate, and seepage water flowrate, were investigated experimentally using a physical model. Experimental results show that groundwater head around storage cavern increases as cavern Pressure increases, while it decreases as clogging becomes severe. The pressure in storage cavern is required to reduce up to atmospheric pressure in order to detect and identify the degree of clogging more accurately. The decrease of uroundwater head due to clogging slows down as the pressure in borehole increases. As amounts of suspended matters in injected water increase, both injection water flowrate and seepage water flowrate decrease linearly with time, and the flowrate of injection water drops rapidly compared with seepage water flowrate.

  • PDF

Study on Lower Extremities Activities Pattern of ADL and Treadmill Gait According to Harness Body-Weight Support Percentages (일상생활 동작 및 하네스 체중지지율에 따른 트레드밀 보행 시 하지 패턴에 관한 연구)

  • Song, S.M.;Yu, C.H.;Kim, K.;Kim, J.J.;Song, W.K.;Hong, C.U.;Kwon, T.K.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.9 no.4
    • /
    • pp.319-329
    • /
    • 2015
  • The purpose of this paper is to analyze lower extremities pattern of daily activities and walking on the treadmill with passive body support system. The experiments will be used for basic research of developing active harness system. The experimental procedure has been validated on 5 healthy male subjects and we measured foot pressure and 8 section of lower limb muscles activities. The EMG results of ADL indicate that there have specific muscle activity patterns followed by each activities. The vastus lateralis muscle activities were highly seems on the activities that requires flection and extension of knee joint. The foot pressure value of stair descent activity was the highest due to the fact that it is come down to the direction of gravity. The results with the passive body weight support percentages show that the EMG and foot pressure values were declined according to increasement of the body weight support percentages. Therefore the body weight support system could apply gait rehabilitation system for various patients by changing the percentages of the body weight support.

  • PDF

Effect of Current Density on Material Removal in Cu ECMP (구리 ECMP에서 전류밀도가 재료제거에 미치는 영향)

  • Park, Eunjeong;Lee, Hyunseop;Jeong, Hobin;Jeong, Haedo
    • Tribology and Lubricants
    • /
    • v.31 no.3
    • /
    • pp.79-85
    • /
    • 2015
  • RC delay is a critical issue for achieving high performance of ULSI devices. In order to minimize the RC delay time, we uses the CMP process to introduce high-conductivity Cu and low-k materials on the damascene. The low-k materials are generally soft and fragile, resulting in structure collapse during the conventional high-pressure CMP process. One troubleshooting method is electrochemical mechanical polishing (ECMP) which has the advantages of high removal rate, and low polishing pressure, resulting in a well-polished surface because of high removal rate, low polishing pressure, and well-polished surface, due to the electrochemical acceleration of the copper dissolution. This study analyzes an electrochemical state (active, passive, transpassive state) on a potentiodynamic curve using a three-electrode cell consisting of a working electrode (WE), counter electrode (CE), and reference electrode (RE) in a potentiostat to verify an electrochemical removal mechanism. This study also tries to find optimum conditions for ECMP through experimentation. Furthermore, during the low-pressure ECMP process, we investigate the effect of current density on surface roughness and removal rate through anodic oxidation, dissolution, and reaction with a chelating agent. In addition, according to the Faraday’s law, as the current density increases, the amount of oxidized and dissolved copper increases. Finally, we confirm that the surface roughness improves with polishing time, and the current decreases in this process.