• Title/Summary/Keyword: active noise control

Search Result 856, Processing Time 0.036 seconds

Active Window to Reduce the Exterior Noise Flowed Through the Open Window (열린 창문을 통해 유입되는 소음을 저감하는 능동소음제어 창문)

  • Kwon, Byoung-Ho;Park, Young-Jin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.9
    • /
    • pp.820-827
    • /
    • 2011
  • Recently, noise has been regarded as one of the most notorious and frequent environmental pollutions which can be often encountered not only in the living space but also in the industrial site. Studies on physiological and psychological effects of long-term noise exposure to human being have commanded the public interest on noise issues. Since environmental noises such as traffic noise and construction noise is mainly flowed through the open window, it is necessary to develop the active noise control system to reduce it inside the building. Although control speakers and microphones for the noise signal measurement in the control region are essential for the conventional active noise control methods, it is impossible to implement them in the control region in the building environment because the control region is the living quarter and they may hinder activities of the residents. Therefore, we proposed the active window system to reduce the exterior noise flowed through the open window with microphones installed outside the window and control speakers installed at the frame of the window. To confirm the performance of the proposed active window, we carried out the simulation and experiment using active window system with 8 control speakers. Simulation results showed the noticeable noise reduction effect inside the control region within the frequency range without the spatial aliasing. Experimental result showed that the total acoustic potential energy inside the room of the scale model is reduced to about 10dB within the interest of frequency range.

Active Noise Control of 3D Enclosure System using FXLMS Algorithm (FXLMS 알고리즘을 이용한 3 차원 인클로저 시스템의 능동소음제어)

  • Oh, Jae-Eung;Yang, In-Hyung;Yoon, Ji-Hyun;Jung, Jae-Eun;Lee, Jong-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.240-241
    • /
    • 2009
  • The method of the reduction of the duct noise can be classified by the method of passive control and the method of active control. However, the passive control method has a demerit to reduce the effect of noise reduction at low frequency (below 500Hz) range and to be limited by a space. Whereas, the active control method can overcome the demerit of passive control method. The algorithm of active control is mostly used the Least-Mean-Square (LMS) algorithm because the LMS algorithm can easily obtain the complex transfer function in real-time. Especially, When the Filtered-X LMS (FXLMS) algorithm is applied to an ANC system.

  • PDF

Improvement Noise Attenuation Performance of the Active Noise Control System Using RCMAC (RCMAC를 이용한 능동소음 제어시스템의 소음저감 성능개선)

  • Han, S.I.;Yeo, D.Y.;Kim, S.H.;Lee, K.S.
    • Journal of Power System Engineering
    • /
    • v.14 no.5
    • /
    • pp.56-62
    • /
    • 2010
  • In this paper, a recurrent cerebellar modulation articulation control (RCMAC) has been developed for improvement of noise attenuation performance in active noise control system. For the narrow band noise, a filter-x least mean square (FXLMS) method has bee frequently employed as an algorithm for active noise control (ANC) and has a partial satisfactory noise attenuation performance. However, noise attenuation performance of an ANC system with FXLMS method is poor for broad band noise and nonlinear path since it has linear filtering structure. Thus, an ANC system using RCMAC is proposed to improve this problem. Some simulations in duct system using harmonic motor noise and KTX cabin noise as a noise source were executed. It is shown that satisfactory noise attenuation performance can be obtained.

Active Noise Control of a Closed Rectangular Cavity Using FXLMS Algorithms (FXLMS 알고리듬을 이용한 사각밀폐공간의 능동소음제어)

  • Ryu, Kyung-Wan;Hong, Chin-Suk;Shin, Chang-Joo;Jeong, Weui-Bong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.11
    • /
    • pp.983-990
    • /
    • 2011
  • This paper investigates active noise control(ANC) of a rectangular cavity using single channel filtered-x least mean square(FXLMS) algorithms to globally reduce the interior noise. To obtain the global reduction of the interior noise, multichannel active control should be incorporated in general. We, however, examined firstly the optimal location of the secondary source that produces a global reduction of the interior noise field using single channel control. We then investigated the frequency characteristics of the reduction to yield the effective frequency band of the active control system. It follows that the secondary source should be located as close to the primary source as possible in order to obtain the global reduction.

Active Control of Sound in a Duct System by Back Propagation Algorithm (역전파 알고리즘에 의한 덕트내 소음의 능동제어)

  • Shin, Joon;Kim, Heung-Seob;Oh, Jae-Eung
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.9
    • /
    • pp.2265-2271
    • /
    • 1994
  • With the improvement of standard of living, requirement for comfortable and quiet environment has been increased and, therefore, there has been a many researches for active noise reduction to overcome the limit of passive control method. In this study, active noise control is performed in a duct system using intelligent control technique which needs not decide the coefficients of high order filter and the mathematical modeling of a system. Back propagation algorithm is applied as an intelligent control technique and control system is organized to exclude the error microphone and high speed operational device which are indispensable for conventional active noise control techniques. Furthermore, learning is performed by organizing acoustic feedback model, and the effect of the proposed control technique is verified via computer simulation and experiment of active noise control in a duct system.

Implementation of Active Noise Barriers Using Active Noise Control Techniques (능동소음제어 기법을 이용한 Active Noise Barrier구현)

  • Kwon Hyok;Seo Sung-Dae;Nam Hyun-Do
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.730-733
    • /
    • 2002
  • In this paper, implementation of active noise barriers using active noise control techniques is presented. Multi-channel FX-LMS algorithms and Leaky LMS algorithms are used for adaptive filters to attenuate noise which is propagated from the outside of experimental enclosures. Experiments have done to show the effectivene a proposed active noise barriers.

  • PDF

Active Control of Transmitted Noise through Opening of Enclosures (인클러져 개구부 투과소음 능동제어)

  • Lee, Hanwool;Hong, Chinsuk;Jung, Weuibong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.733-738
    • /
    • 2012
  • This paper presents active noise control for the reduction of transmission noise passing through opening of enclosures. Enclosures are essential measure to protect noise propagation from operating machinery. Access openings of the enclosures are important path of noise leakage. First, we modeled and analyzed the noise characteristics passing through the openings of the enclosure generated by the operation of the machinery based on the finite element method. We then implemented a feedforward controller to actively control the acoustic power through the opening. Finally, we conducted optimization of placement of the reference sensors for several cases of the number of sensors. A good control performances were achieved using a minimum number of microphones arranged a optimal placement.

  • PDF

Narrowband Active Control of Noise in Thermal Power Plants (협대역 능동소음 제어기법을 이용한 화력발전소 소음제어)

  • 남현도;서성대;황정현
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.15 no.5
    • /
    • pp.34-40
    • /
    • 2001
  • In this paper, a narrowband active noise control system to reduce the noise in thermal power plants is proposed. The narrowband active noise control system contains rectangular wave generator and has a multi channel feed forward adaptive algorithms which uses the adjoint LMS algorithm. Although the effectiveness have been proven in the filtered-X LMS broadband active noise control system, this algorithm has much more computational complexity than that of narrowband active noise control system. The proposed active control system that uses the adjoint LMS algorithm, compared to the previous broadband active noise control system, not only is more effective in controlling narrowband noise but also has a more stable structure. Adaptive filter contains the FIR structure and IIR structure for primary and secondary path models. The simulation proves the effectiveness of the proposed algorithm.

  • PDF

Active Random Noise Control using Adaptive Learning Rate Neural Networks

  • Sasaki, Minoru;Kuribayashi, Takumi;Ito, Satoshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.941-946
    • /
    • 2005
  • In this paper an active random noise control using adaptive learning rate neural networks is presented. The adaptive learning rate strategy increases the learning rate by a small constant if the current partial derivative of the objective function with respect to the weight and the exponential average of the previous derivatives have the same sign, otherwise the learning rate is decreased by a proportion of its value. The use of an adaptive learning rate attempts to keep the learning step size as large as possible without leading to oscillation. It is expected that a cost function minimize rapidly and training time is decreased. Numerical simulations and experiments of active random noise control with the transfer function of the error path will be performed, to validate the convergence properties of the adaptive learning rate Neural Networks. Control results show that adaptive learning rate Neural Networks control structure can outperform linear controllers and conventional neural network controller for the active random noise control.

  • PDF

Active Noise Control of Closed Rectangular Cavity using the FXLMS Algorithms (FXLMS 알고리듬을 이용한 사각밀폐공간의 능동소음제어)

  • Ryu, Kyung-Wan;Hong, Chin-Suk;Jeong, Wei-Bong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.247-249
    • /
    • 2009
  • This paper investigates active noise control(ANC) of a rectangular cavity using single channel filtered-x least mean square(FXLMS) algorithms to reduce interior noise globally. To obtain global reduction of the interior noise, multichannel active control should be incorporated in general. We, however, examined firstly the optimal location of the secondary speaker that produces a global reduction of the interior noise field. We then investigated the frequency characteristics of the reduction to yield the effective frequency band of the active control system. It follows that the secondary speaker should be located as close to the primary source as possible in order to obtain global reduction.

  • PDF