• Title/Summary/Keyword: active integrated antenna

Search Result 32, Processing Time 0.025 seconds

Active GNSS Antenna Implemented with Two-Stage LNA on High Permittivity Substrate

  • Go, Jong-Gyu;Chung, Jae-Young
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.2004-2010
    • /
    • 2018
  • We propose a small active antenna to receive Global Navigation Satellite System (GNSS) signals, i.e., Global Positioning System (GPS) L1 (1,575MHz) and Russian Global Navigation Satellite System (GLONASS) L1 (1,600 MHz) signals. A two-stage low-noise amplifier (LNA) with more than 27 dB gain is implemented in the bottom layer of a three-layer antenna package. In addition, a hybrid coupler is used to combine signals from pair of proximately coupled orthogonal feeds with $90^{\circ}$ phase difference to achieve the circular polarization (CP) characteristic. Three layers of high permittivity (${\varepsilon}_r=10$) substrates are stacked and effectively integrated to have a small dimension of $64mm{\times}64mm{\times}7.42mm$ (including both circuit and antenna). The reflection coefficient of the fabricated antenna at the target frequency is below -10 dB, the measured antenna gain is above 26 dBic and the measured noise figure is less than 1.4 dB.

A design and fabrication of active phased array antenna for beam scanning using injection-locking coupled oscillators (Injection-Locking Coupled Oscillators를 이용한 빔 주사 용 능동 위상배열안테나의 설계 및 제작)

  • 이두한;김교헌;홍의석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.8
    • /
    • pp.1622-1631
    • /
    • 1997
  • A 3-stages Active Microstrip Phased Array Antenn(AMPAA) is implemented using Injection-Locking Coupled Oscillators(ILCO). The AMPAA is a beam scanning active antenna with capability of electrical scanning by frequency varation of ILCO. The synchronization of resonance frequencies in array elements is occured by ILCO, and the ILCO amplifies the injection signal and functions as a phase shifter. The microstrip ptch is operated as a radiation element. The unilateral amplifier is a mutual coupling element of AMPAA, eliminates the reverse locking signal and controls the locking bandwidth of ILCO. The possibility of Monolithic Microwave Integrated Circuits(MMIC) of T/R module is proposed by simplified and integrated fabrication process of AMPAA. The 0.75.$lambda_{0}$ is fixed for a mutual coupling space to wide the scanning angle and minimize the multi-mode. The AMPAA has beam scanning angle of 31.4.deg., HPBW(Half Power Beam Widths) of 26.deg., directive gain of 13.64dB and side lobe of -16.5dB were measured, respectively.

  • PDF

A Study on the Vehicle Digital Broadcasting System of Active Electronic Control Method using Phase Shifter (위상변위기를 이용한 능동전자제어방식의 차량용 디지털 위성방송 시스템에 관한 연구)

  • 김기열;이상호;박종국
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.7
    • /
    • pp.903-908
    • /
    • 1999
  • In this paper, it is proposed the phase shifter array active system to receive digital satellite broadcasting for vehicle. To receive satellite broadcasting data in vehicle, it is inevitable to have active antenna system, which traces the satellite in real time. Also if it is used in vehicle, it must be thin and light structure. To develop this type of antenna system, several techniques should be integrated properly. These are the design and manufacturing technique of high gain antenna, algorithm for tracking satellite and its manufacturing technique, controller design and manufacturing technique, system integration technique and so on. The validity of the proposed AVDBS system was confirmed by simulation and experimental results.

  • PDF

A Study on the Active Integrated Antenna (능동 집적 안테나에 관한 연구)

  • 이병무;윤영중
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.1
    • /
    • pp.19-25
    • /
    • 2002
  • This paper presents novel architectures for power amplifier (PA) relying on 3rd harmonic-tuning technique and dual feeding antenna structure for the isolation of the Tx and the Rx ports. Active integrated antenna (AIA) with power amplifier makes the problem of the isolation between the Tx and the Rx ports occur So, this paper suggests dual feeding and dual resonant structures of the AIA with PA are possible to obtain the high isolation between the Tx and the Rx signals. Dual resonant triangular microstrip antenna, which can replace power amplifier tuning circuit, with slots-loaded and characteristic of the isolation between the Tx and the Rx ports using inset microstrip line feeding and probe feeding methods is proposed and experimentally studied for the case of thin substrate.

The single-stage transmission type injection-locked oscillator was designed and fabricated for the active integrated phased array antenna (능동 위상배열 안테나를 위한 single-stage transmission type ijection-locked oscillator(STILO)의 설계 및 제작)

  • 이두한;김교헌;홍의석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.3
    • /
    • pp.763-770
    • /
    • 1996
  • In this paper, the Single-stage Transmission type Injectiong-Locked Oscillator(STILO) was designed and fabicated for the Active Integrated Phased Array Antenna(AIPAA) system. The STILO, which was designed and fabricated by injection-locked technique and hair-pin resonator, has the same 210MHz frequency tuning range of the Voltage Controlled Oscillator(VCO) used by varactor. The locking bandwidth of STILO with 11.5MHz bandwidth, is much better than that of the Injection-Locked Dielectric Resonator Oscillator(ILDRO), And the STILO has the improved noise characteristics in AM, FM, and PM. This STILO is useful for the AIPAA, the coupled VCO array, an the MMIC structure.

  • PDF

Synthesis of Filtering Structures for Microstrip Active Antennas Using Orlov's Formula

  • Urbani, Fabio;Bilotti, Filiberto;Vegni, Lucio
    • ETRI Journal
    • /
    • v.27 no.2
    • /
    • pp.166-171
    • /
    • 2005
  • In this paper, a synthesis technique for nonuniform filtering structures to be employed in active integrated antenna layouts is presented. The idea is to suppress the higher harmonic contribution due to the presence of nonlinear components through a nonuniform transmission line properly designed via Orlov's synthesis formula. The theory presented is applied here to synthesize an amplifier-based active antenna layout for wireless local area network (WLAN) purposes working at 2.4 GHz. The numerical results presented show the capabilities of the proposed approach.

  • PDF

Design and fabrication of the 2.4 to 2.5 GHz voltage controlled oscillator using microstrip patch antenna (마이크로스트립 패치 안테나를 이용한 2.4 ~ 2.5GHz 에서 동작하는 전압 조정 발진기의 설계 및 제작)

  • 황재호;명노훈
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.2
    • /
    • pp.78-86
    • /
    • 1996
  • Solid-state devices can be directly integrated with a planar antenna to form active antenna elements. In this paper, the voltage controlled oscillator (VCO) is designed and fabricated at 2.4 to 2.5 GHz using a microstrip patch antenna. A varactor diode is used as avariable reactance. The predicted frequency tuning range of the VCO is 2.448 to 2.498 GHz in the design procedure and the fabricated VCO has 2.446 to 2.498 GHz frequency tuning range when the varactor tuning voltage is varied from 0 to 11V. Transmitted power output of the patch antenna which serves both as a rsonator and a radiating element for VCO is about 18 mW over this tuning range.

  • PDF

SOA-Integrated Dual-Mode Laser and PIN-Photodiode for Compact CW Terahertz System

  • Lee, Eui Su;Kim, Namje;Han, Sang-Pil;Lee, Donghun;Lee, Won-Hui;Moon, Kiwon;Lee, Il-Min;Shin, Jun-Hwan;Park, Kyung Hyun
    • ETRI Journal
    • /
    • v.38 no.4
    • /
    • pp.665-674
    • /
    • 2016
  • We designed and fabricated a semiconductor optical amplifier-integrated dual-mode laser (SOA-DML) as a compact and widely tunable continuous-wave terahertz (CW THz) beat source, and a pin-photodiode (pin-PD) integrated with a log-periodic planar antenna as a CW THz emitter. The SOA-DML chip consists of two distributed feedback lasers, a phase section for a tunable beat source, an amplifier, and a tapered spot-size converter for high output power and fiber-coupling efficiency. The SOA-DML module exhibits an output power of more than 15 dBm and clear four-wave mixing throughout the entire tuning range. Using integrated micro-heaters, we were able to tune the optical beat frequency from 380 GHz to 1,120 GHz. In addition, the effect of benzocyclobutene polymer in the antenna design of a pin-PD was considered. Furthermore, a dual active photodiode (PD) for high output power was designed, resulting in a 1.7-fold increase in efficiency compared with a single active PD at 220 GHz. Finally, herein we successfully show the feasibility of the CW THz system by demonstrating THz frequency-domain spectroscopy of an ${\alpha}$-lactose pellet using the modularized SOA-DML and a PD emitter.

Dual Polarized Array Antenna for S/X Band Active Phased Array Radar Application

  • Han, Min-Seok;Kim, Ju-Man;Park, Dae-Sung;Kim, Hyoung-Joo;Choi, Jae-Hoon
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.4
    • /
    • pp.309-315
    • /
    • 2010
  • A dual-band dual-polarized microstrip antenna array for an advanced multi-function radio function concept (AMRFC) radar application operating at S and X-bands is proposed. Two stacked planar arrays with three different thin substrates (RT/Duroid 5880 substrates with $\varepsilon_r$=2.2 and three different thicknesses of 0.253 mm, 0.508 mm and 0.762 mm) are integrated to provide simultaneous operation at S band (3~3.3 GHz) and X band (9~11 GHz). To allow similar scan ranges for both bands, the S-band elements are selected as perforated patches to enable the placement of the X-band elements within them. Square patches are used as the radiating elements for the X-band. Good agreement exists between the simulated and the measured results. The measured impedance bandwidth (VSWR$\leq$2) of the prototype array reaches 9.5 % and 25 % for the S- and X-bands, respectively. The measured isolation between the two orthogonal polarizations for both bands is better than 15 dB. The measured cross-polarization level is ${\leq}-21$ dB for the S-band and ${\leq}-20$ dB for the X-band.