• Title/Summary/Keyword: active damping

검색결과 481건 처리시간 0.027초

전차 모델에 대한 반능동 현가장치의 적용에 대한 연구 (A Study on the Application of Semi-active Suspension System to a 3-D Full Vehicle Model)

  • 방범석;백윤수;박영필
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1994년도 추계학술대회 논문집
    • /
    • pp.938-944
    • /
    • 1994
  • Active damping has been shown to offer increased suspension performance in terms of vehicle isolation, suspension packaging, and road-tire contract force. Many semi-active damping strategies have been introduced to approximate the response of active damping with the modulation of passive damping parameters. This study investigates the characteristics of semi-active suspension control through the simulation of passive, skyhook active, and semi-active damping models. A quarter car model is studied with the conrolled damping replacing both passive and active damping. A new semi-active scheme is suggested to eliminate the abrupt changes in semi-active damping force. It is shown that the new strategy performs almost identically to the so called "force controlled" semi-active law without steep changes in damping force or body acceleration.eleration.

  • PDF

유압식 능동 현가시스템의 개발에 관한 연구 (A study on development of hydraulic active suspension system)

  • 장성욱;박성환;이진걸
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.1459-1464
    • /
    • 1996
  • The most important parameter for hydraulic active suspension system is to sustain desirable vehicle maneuvering stability and ride comfort without increasing consumption power. The performance of hydraulic active suspension system depends on damping force of body damping valve and piston damping valve. Hydraulic actuator design and damping valve parameter selection are essential and basic procedure to design hydraulic active suspension system. This paper is on computer simulation with use of mathematical model that was delivered from dynamic characteristic of hydraulic actuator, as know basic damping characteristics of hydraulic active suspension system. The aim of this paper is to select the system parameter that affect mainly hydraulic active suspension, and identify the validity on the system parameter selection.

  • PDF

능동구속감쇠 기법을 이용한 복합적층보의 진동 제어 (Vibration Control of Laminated Composite Beams Using Active Constrained Layer Damping Treatment)

  • 강영규;최승복
    • 한국소음진동공학회논문집
    • /
    • 제11권7호
    • /
    • pp.261-266
    • /
    • 2001
  • The flexural vibration of laminated composite beams with active and passive constrained layer damping has been investigated to design a structure with maximum possible damping capacity. The equations of motion are derived fro flexural vibrations of symmetrical,. multi-layer laminated beams. The damping ratio and model damping of the first bending mode are calculated by means of iterative complex eigensolution method. The direct negative velocity feedback control is used for the active constrained layer damping. It is shown that the flexible laminated beam is more effective in the vibration control for both active and passive constrained layer damping. and this paper addresses a design strategy of laminated composite under flexural vibrations with constrained layer damping.

  • PDF

Sensorless Active Damping Method for an LCL Filter in Grid-Connected Parallel Inverters for Battery Energy Storage Systems

  • Sung, Won-Yong;Ahn, Hyo Min;Ahn, Jung-Hoon;Lee, Byoung Kuk
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권1호
    • /
    • pp.280-286
    • /
    • 2018
  • A sensorless active damping scheme for LCL filters in grid-connected parallel inverters for battery energy storage systems is proposed. This damping method is superior to the conventional notch filter and virtual damping methods with respect to robustness against the variation of the resonance of the filter and unnecessary additional current sensors. The theoretical analysis of the proposed damping method is explained in detail, along with the characteristic comparison to the conventional active damping methods. The performance verification of the proposed sensorless active damping method shows that its performance is comparable to that of the conventional virtual damping method, even without additional current sensors. Finally, simulation and experimental results are provided to examine the overall characteristics of the proposed method.

유압식 능동 현가시스템의 설계 및 적용에 관한 연구 (A Study on the Application and Design of Hydraulic Active Suspension System)

  • 장성욱;이진걸
    • 대한기계학회논문집A
    • /
    • 제26권4호
    • /
    • pp.683-692
    • /
    • 2002
  • The most important parameter for hydraulic active suspension system is to sustain desirable vehicle maneuvering stability and ride comfort without increasing power consumption. The performance of hydraulic active suspension system depends on damping force of body damping valve and piston damping valve. Hydraulic actuator design and damping valve parameter selection are essential and basic procedure to design hydraulic system. This paper is on computer simulation with use of mathematical model that was delivered from dynamic characteristic of hydraulic actuator, as know basic damping characteristics of hydraulic active suspension system. The aim of this paper is to select the system parameter that affect mainly hydraulic active suspension, and identify the validity on the system parameter selection.

A Modified Capacitor Current Feedback Active Damping Approach for Grid Connected Converters with an LCL Filter

  • Wan, Zhiqiang;Xiong, Jian;Lei, Ji;Chen, Chen;Zhang, Kai
    • Journal of Power Electronics
    • /
    • 제15권5호
    • /
    • pp.1286-1294
    • /
    • 2015
  • Capacitor current feedback active damping is extensively used in grid-connected converters with an LCL filter. However, systems tends to become unstable when the digital control delay is taken into account, especially in low switching frequencies. This paper discusses this issue by deriving a discrete model with a digital control delay and by presenting the stable region of an active damping loop from high to low switching frequencies. In order to overcome the disadvantage of capacitor current feedback active damping, this paper proposes a modified approach using grid current and converter current for feedback. This can expand the stable region and provide sufficient active damping whether in high or low switching frequencies. By applying the modified approach, the active damping loop can be simplified from fourth-order into second-order, and the design of the grid current loop can be simplified. The modified approach can work well when the grid impedance varies. Both the active damping performance and the dynamic performance of the current loop are verified by simulations and experimental results.

A new hybrid vibration control methodology using a combination of magnetostrictive and hard damping alloys

  • Buravalla, Vidyashankar R.;Bhattacharya, Bishakh
    • Smart Structures and Systems
    • /
    • 제3권4호
    • /
    • pp.405-422
    • /
    • 2007
  • A new hybrid damping technique for vibration reduction in flexible structures, wherein a combination of layers of hard passive damping alloys and active (smart) magnetostrictive material is used to reduce vibrations, is proposed. While most conventional vibration control treatments are based exclusively on either passive or active based systems, this technique aims to combine the advantages of these systems and simultaneously, to overcome the inherent disadvantages in the individual systems. Two types of combined damping systems are idealized and studied here, viz., the Noninteractive system and the Interactive system. Frequency domain studies are carried out to investigate their performance. Finite element simulations using previously developed smart beam elements are carried out on typical metallic and laminated composite cantilever beams treated with hybrid damping. The influence of various parameters like excitation levels, frequency (mode) and control gain on the damping performance is investigated. It is shown that the proposed system could be used effectively to dampen the structural vibration over a wide frequency range. The interaction between the active and passive damping layers is brought out by a comparative study of the combined systems. Illustrative comparisons with 'only passive' and 'only active' damping schemes are also made. The influence and the mode dependence of control gain in a hybrid system is clearly illustrated. This study also demonstrates the significance and the exploitation of strain dependency of passive damping on the overall damping of the hybrid system. Further, the influence of the depthwise location of damping layers in laminated structures is also investigated.

움직이는 감쇠제어기를 이용한 능동진동제어 (Active Vibration Suppression Using Sweeping Damping Controller)

  • 배병찬;곽문규;이명일
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.293-296
    • /
    • 2005
  • This paper is concerned with the sweeping damping controller for beam. The active damping characteristics can be enhanced by moving the damper along the longitudinal axis. In this paper, the equation of motion for a beam including a sweeping damping controller is derived and its stability is proved by using Lyapunov stability theorem. It is found from the theoretical study that the sweeping damping controller can enhance the active damping characteristics, so that a single damper can suppress all the vibration modes of the beam. To demonstrate the concept of the sweeping damping control, the eddy current damper was applied to a cantilever, where the eddy current damping can move along the axis. The experimental result shows that the sweeping eddy current damper Is an effective device for vibration suppression.

  • PDF

Active Damping for Wind Power Systems with LCL Filters Using a DFT

  • Lee, June-Seok;Jeong, Hae-Gwang;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • 제12권2호
    • /
    • pp.326-332
    • /
    • 2012
  • This paper proposes a simple active damping algorithm for small-scale wind power systems with an LCL filter. Compared to an L filter or an LC filter, an LCL filter can decrease the harmonics induced by low switching frequencies and produce a satisfactory grid-side current using a comparatively low inductance. Additional active damping of the filter resonance is necessary when an LCL filter is used. This paper introduces an active damping method using a Discrete Fourier Transform (DFT) filter to improve performance without additional sensors or complexity. Experimental results are shown to verify the validity of the proposed algorithm as an active damping method.

능동 구속감쇠층을 이용한 아크형태 셸 모델에 대한 진동특성 연구 (Vibration Characteristic Study of Arc Type Shell Using Active Constrained Layer Damping)

  • 고성현;박현철;황운봉;박철휴
    • 한국소음진동공학회논문집
    • /
    • 제14권3호
    • /
    • pp.193-200
    • /
    • 2004
  • The Active Constrained Layer Damping(ACLD) combines the simplicity and reliability of passive damping with the low weight and high efficiency of active control to attain high damping characteristics. The proposed ACLD treatment consists of a viscoelastic damping which is sandwiched between an active piezoelectric layer and a host structure. In this manner, the smart ACLD consists of a Passive Constrained Layer Damping(PCLD) which is augmented with an active control in response to the structural vibrations. The arc type shell model is introduced to describe the interactions between the vibrating host structure, piezoelectric actuator and viscoelastic damping. The system is modeled by applying ARMAX model and changing a state-space form through the system identification method. An optimum control law for the piezo actuator is obtain by LQR(Linear Quadratic Regulator) method. The performance of the ACLD system is determined and compared with PCLD in order to demonstrate the effectiveness of the ACLD treatment. Also, the actuation capability of a piezo actuator is examined experimentally by varying thickness of viscoelastic material(VEM).