• 제목/요약/키워드: active controller

검색결과 1,111건 처리시간 0.022초

Simplified Controller Design Method for Digitally Controlled LCL-Type PWM Converter with Multi-resonant Quasi-PR Controller and Capacitor-Current-Feedback Active Damping

  • Lyu, Yongcan;Lin, Hua
    • Journal of Power Electronics
    • /
    • 제14권6호
    • /
    • pp.1322-1333
    • /
    • 2014
  • To track the sinusoidal current under stationary frame and suppress the effects of low-order grid harmonics, the multi-resonant quasi-proportional plus resonant (PR) controller has been extensively used for digitally controlled LCL-type pulse-width modulation (PWM) converters with capacitor-current-feedback active damping. However, designing the controller is difficult because of its high order and large number of parameters. Moreover, the computation and PWM delays of the digitally controlled system significantly affect damping performance. In this study, the delay effect is analyzed by using the Nyquist diagrams and the system stability constraint condition can be obtained based on the Nyquist stability criterion. Moreover, impact analysis of the control parameters on the current loop performance, that is, steady-state error and stability margin, identifies that different control parameters play different decisive roles in current loop performance. Based on the analysis, a simplified controller design method based on the system specifications is proposed. Following the method, two design examples are given, and the experimental results verify the practicability and feasibility of the proposed design method.

Active control of a flexible structure with time delay

  • Cai, Guo-Ping;Yang, Simon X.
    • Structural Engineering and Mechanics
    • /
    • 제20권2호
    • /
    • pp.191-207
    • /
    • 2005
  • Time delay exists inevitably in active control, which may not only degrade the system performance but also render instability to the dynamic system. In this paper, a novel active controller is developed to solve the time delay problem in flexible structures. By using the independent modal space control method, the differential equation of the controlled mode with time delay is obtained from the time-delay system dynamics. Then it is discretized and changed into a first-order difference equation without any explicit time delay by augmenting the state variables. The modal controller is derived based on the augmented system using the discrete variable structure control method. The switching surface is determined by minimizing a discrete quadratic performance index. The modal coordinate is extracted from sensor measurements and the actuator control force is converted from the modal one. Since the time delay is explicitly included throughout the entire controller design without any approximation, the system performance and stability are guaranteed. Numerical simulations show that the proposed controller is feasible and effective in active vibration control of dynamic systems with time delay. If the time delay is not explicitly included in the controller design, instability may occur.

Fuzzy hybrid control of a wind-excited tall building

  • Kang, Joo-Won;Kim, Hyun-Su
    • Structural Engineering and Mechanics
    • /
    • 제36권3호
    • /
    • pp.381-399
    • /
    • 2010
  • A fuzzy hybrid control technique using a semi-active tuned mass damper (STMD) has been proposed in this study for mitigation of wind induced motion of a tall building. For numerical simulation, a third generation benchmark is employed for a wind-excited 76-story building. A magnetorheological (MR) damper is used to compose an STMD. The proposed control technique employs a hierarchical structure consisting of two lower-level semi-active controllers (sub-controllers) and a higher-level fuzzy hybrid controller. Skyhook and groundhook control algorithms are used as sub-controllers. When a wind load is applied to the benchmark building, each sub-controller provides different control commands for the STMD. These control commands are appropriately combined by the fuzzy hybrid controller during realtime control. Results from numerical simulations demonstrate that the proposed fuzzy hybrid control technique can effectively reduce the STMD motion as well as building responses compared to the conventional hybrid controller. In addition, it is shown that the control performance of the STMD is superior to that of the sample TMD and comparable to an active TMD, but with a significant reduction in power consumption.

무부하 압축기에 의한 냉장고 기계실 소음의 능동제어 (Active Control of Noise Transmitted through Ventilation Openings of the Machinery Room of Refrigerator)

  • 구정모;정의봉;김태훈;홍진숙
    • 한국소음진동공학회논문집
    • /
    • 제26권4호
    • /
    • pp.475-482
    • /
    • 2016
  • The active control of noise generated by the compressor and transmitted out of the machine room through the windows is implemented based on the FIR filter. The machine room contains most of noise sources of electric home appliances, air-conditioners and refrigerators, for example. To actively reduce the noise from the machinery room. In this paper, the transfer function of the controller for minimization of the acoustic power transmitted through the windows is mathematically formulated. The transfer functions required for implementation of the active controller are the measured. The measurements are conducted in this initial stage under the operation of the compressor with no load. For improvement of the reliability of the transfer function of the compressor to the acoustic power, additional operational measurements are performed. The real time controller is implemented based on the FIR filter using the measured transfer functions and the performance of the active controller is estimated. Control performance is measured about 3 dB ~ 10 dB in reduction of the sound power at the peaks of the compressor noise.

PPF와 SRF 조합기법을 사용한 지능구조물의 능동진동제어 (Vibration Suppression of Smart Structures Using a Combined PPF-SRF Control Technique)

  • 곽문규;라완규;윤광준
    • 소음진동
    • /
    • 제7권5호
    • /
    • pp.811-817
    • /
    • 1997
  • This paper is concerned with the active vibration controller design for the grid structure based on the positive position feedback (PPF) and the strain rate feedback (SRF) control. A new control methodology by the combination of the PPF and SRF control can suppress all the modes of the structure theoretically and can be easily implemented with analog circuits. The underlying concept for the design of the new controller is that the SRF controller stabilizes the modes higher than the second mode and the PPF controller stabilizes the fundamental mode which is destabilized by the SRF controller. In order for the new controller to be implemented succesfully, the collocated control is necessary. To this end, the piezoceramic sensor and actuator are located as close as possible, thus realizing the nearly collocated control. The combined PPF and ARF controller proves its effectiveness by experiments.

  • PDF

GA-BASED PID AND FUZZY LOGIC CONTROL FOR ACTIVE VEHICLE SUSPENSION SYSTEM

  • Feng, J.-Z.;Li, J.;Yu, F.
    • International Journal of Automotive Technology
    • /
    • 제4권4호
    • /
    • pp.181-191
    • /
    • 2003
  • Since the nonlinearity and uncertainties which inherently exist in vehicle system need to be considered in active suspension control law design, this paper proposes a new control strategy for active vehicle suspension systems by using a combined control scheme, i.e., respectively using a genetic algorithm (GA) based self-tuning PID controller and a fuzzy logic controller in two loops. In the control scheme, the PID controller is used to minimize vehicle body vertical acceleration, the fuzzy logic controller is to minimize pitch acceleration and meanwhile to attenuate vehicle body vertical acceleration further by tuning weighting factors. In order to improve the adaptability to the changes of plant parameters, based on the defined objectives, a genetic algorithm is introduced to tune the parameters of PID controller, the scaling factors, the gain values and the membership functions of fuzzy logic controller on-line. Taking a four degree-of-freedom nonlinear vehicle model as example, the proposed control scheme is applied and the simulations are carried out in different road disturbance input conditions. Simulation results show that the present control scheme is very effective in reducing peak values of vehicle body accelerations, especially within the most sensitive frequency range of human response, and in attenuating the excessive dynamic tire load to enhance road holding performance. The stability and adaptability are also showed even when the system is subject to severe road conditions, such as a pothole, an obstacle or a step input. Compared with conventional passive suspensions and the active vehicle suspension systems by using, e.g., linear fuzzy logic control, the combined PID and fuzzy control without parameters self-tuning, the new proposed control system with GA-based self-learning ability can improve vehicle ride comfort performance significantly and offer better system robustness.

누적방지 기법을 적용한 3상 4선식 능동전력필터 시스템의 직류전압 제어 (Anti-Windup Scheme to Control DC Voltage of Three-Phase Four-Wire Active Power Filter)

  • 정교범
    • 전력전자학회논문지
    • /
    • 제8권2호
    • /
    • pp.128-136
    • /
    • 2003
  • 본 논문은 3상 4선식 전력시스템내의 고조파전류 및 중성선에 흐르는 영상 전류를 저감하기 위한 3상 4선식 능동전력필터의 직류전압 제어를 위한 누적방지기법 적용에 관한 연구를 수행한다. 비선형 스위칭 부하에 의해 발생한 고조파 전류를 효율적으로 저감하고 전력시스템의 전체 성능을 개선하기 위해서, 전력시스템의 운전 특성에 따라 3상 4선식 능동전력필터의 내부 직류전압을 제어할 필요가 있다. 직류전압 제어를 위해서 일반적으로 PI 제어기를 사용하나, 적분기에 의한 누적 오차는 직류전압 제어기의 동특성에 영향을 준다. 따라서 본 논문은 누적방지 기법의 사용을 제안하며, 3상 4선식 능동전력필터의 직류 전압 제어기의 동특성이 개선됨을 컴퓨터 시뮬레이션을 통하여 증명한다.

A controller design for high-quality images on microcapsule active-matrix electrophoretic displays

  • Lu, Chi-Ming;Wey, Chin-Long
    • Journal of Information Display
    • /
    • 제13권1호
    • /
    • pp.21-30
    • /
    • 2012
  • Active-matrix electrophoretic display (AMEPD) is commonly used for the applications of smart handheld reading devices such as e-books and e-news. This paper presents a new reduced waveform lookup table storage method that reduces the associated lookup table by approximately 2n (n is the number of gray levels employed) times the conventional one. The paper also proposes a driving method for image display. The method provides high-speed performance for image display and also effectively eliminates the image residue, achieving high image quality. The prototyped controller was connected to a 6" AMEPD panel, whose excellent display quality demonstrated the effectiveness of the proposed controller design.

반사 소음을 고려한 능동 적응 소음 제어기의 실시간 구현 (Real-time Implementationi of the Active Adaptive Noise Controller Considering the Reflected Noise)

  • 이종필;장영수;정찬수
    • 한국음향학회지
    • /
    • 제9권6호
    • /
    • pp.53-61
    • /
    • 1990
  • Real-time implementations of the active adaptive noise controller are proposed and tested. There are three problems in active noise control such as real-time processing, an acoustic feedback of secondary signal and a time-delay of control system elements. For real-time processing, the DSP56001 was used. To avoid acoustic feedback, the secondary signal was excluded from prediction. And for compensation of time delay, the ahead prediction was applied. As the primary noise is reflected in space, the reflected noise should be controlled for perfect noise control. But in this case, the controller might be unstable. For solving the problem, it is proposed that the source noise and the reflected noise are predicted separately. Some experimental results show the stability and effectiveness of the proposed controller.

  • PDF

A Multiband Shunt Hybrid Active Filter with Sensorless Control

  • Kumar S, Surendra;Sensarma, Partha Sarathi
    • Journal of Power Electronics
    • /
    • 제8권4호
    • /
    • pp.317-324
    • /
    • 2008
  • This paper proposes a Multiband Shunt Hybrid Active Filter (SHAF) with sensorless control. A plant is modeled in the discrete- time domain and a controller is designed using the Pole shifting law in the polynomial domain. This control approach is very useful for filtering the load harmonics with reduced sensor counts where a low cost solution like SHAF is required. Multiple Synchronous Reference Frames (MSRF) and low pass filters are used to measure the $5^{th}$ and $7^{th}$ harmonic components separately from the load and filter currents. Individual current controllers are designed for the $5^{th}$ and $7^{th}$ harmonic currents. Control is realized in the stationary, three-phase (abc) reference frame. Performance of the controller is validated through simulation, using realistic plant and controller models, as well as experimentally on a full-scale distribution system.