• Title/Summary/Keyword: active control device

Search Result 360, Processing Time 0.037 seconds

Three-Phase Z-Source Hybrid Active Power Filter System (3상 Z-소스 하이브리드 능동전력필터 시스템)

  • Lim, Young-Cheol;Kim, Jae-Hyun;Jung, Young-Gook
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.75-85
    • /
    • 2010
  • In this paper, a Z-source hybrid active power filter is proposed to compensate the harmonics and reactive power in power distribution system. The proposed system is composed of a 7th harmonics-tuned passive filter and an active power filter with a Z-source inverter topology, while voltage source PWM inverter or current source PWM inverter are applied as the power converter topology of conventional active power filters. The Z-source impedance network along with shoot through capability would ensure a constant DC voltage across the DC link. A polymer electrolyte membrane fuel cell is employed as an compensation DC energy source of the proposed system and its equivalent R-L-C circuit is modeled for simulation. As the compensation and control algorithm of the proposed system, the current synchronous detection algorithm is applied. The simulation analysis by PSIM is performed under the three-phase 220V/60Hz voltage source and 25A nonlinear diode loads. The effectiveness of the proposed the system is verified in the steady and transient states.

Reduction of combustion instability using flame holder integrated injector (통합형 연료분사장치를 통한 연소불안정 저감)

  • Hwang, Yong-Seok;Lee, Jong-Guen;Park, Ik-Soo;Choi, Ho-Jin;Jin, Yu-In;Yoon, Hyun-Gull;Lim, Jin-Shik
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.432-437
    • /
    • 2010
  • A new device injecting secondary fuel behind flameholder was invented and tested in order to reduce low frequency combustion instability of combustor using V-gutter flameholder. Specially designed combustion device could make large combustion instability up to 180 dB successfully, and newly invented device made a success to reduce 110~120Hz low frequency pressure pulsation up to 84%. It was found that the fuel flow rate of secondary fuel supplying behind flameholder was the only parameter which dominates reduction of instability. It is considered that stabilized flame with sufficient secondary fuel can lead to break the connection between combustion system and acoustic system due to independence of flame from fluctuation of main fuel resulted from synchronization with acoustic wave.

  • PDF

Design of a bluetooth-based interactive control network

  • Kwak, Jae-Hyuk;Lim, Joon-Hong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.922-925
    • /
    • 2004
  • Bluetooth technology is essentially a method for wireless connection of a diverse set of devices ranging from PDAs, mobile phone, notebook computers, to another equipments. The bluetooth system supports both point-to-point connection and point-to-multipoint connections. In point-to-multipoint connection, the channel is shared among several bluetooth devices. Two or more devices sharing the same channel form a piconet. There is one master device and up to seven active slave devices in a piconet. The radio operates in the unlicensed 2.45GHz ISM band. This allows users who travel world-wide to use bluetooth equipments anywhere. Since the link is based on frequency-hop spread spectrum, multiple channels can exist at the same time. The Bluetooth standard has been suggested that Bluetooth equipments can be used in the short-range, maximum 100 meters . It has been defined that the time takes to setup and establish a bluetooth connection among devices is 10 seconds. It is a long time and may be a cause to lose a chance of finding other non-fixed devices. We propose a routing protocols for scatternets which can be used to control a mobile units(MUs) in this network. The proposed routing protocol is composed of two kinds of bluetooth information, access point(AP) and MU.

  • PDF

Development of Unified SCADA System Based on IEC61850 in Wave-Offshore Wind Hybrid Power Generation System (파력-해상풍력 복합발전시스템의 IEC61850기반 통합 SCADA시스템 개발)

  • Lee, Jae-Kyu;Lee, Sang-Yub;Kim, Tae-Hyoung;Ham, Kyung-Sun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.5
    • /
    • pp.811-818
    • /
    • 2016
  • This paper suggests a structure of power control system in floating wave-offshore wind hybrid power generation system. We have developed an unified SCADA(Supervisory Control and Data Acquisition) system which can be used to monitor and control PCS(Power Conversion System) based on IEC61850. The SCADA system is essential to perform the algorithm like proportional distribution and data acquisition, monitoring, active power, reactive power control in hybrid power generation system. IEC61850 is an international standard for electrical substation automation systems. It was made to compensate the limitations of the legacy industrial protocols such as Modbus. In order to test the proposed SCADA system and algorithm, we have developed the wind-wave simulator based Modbus. We have designed a protocol conversion device based on real-time Linux for the communication between Modbus and IEC61850. In this study, SCADA system consists of four 3MW class wind turbines and twenty-four 100kW class wave force generator.

Tracking control of variable stiffness hysteretic-systems using linear-parameter-varying gain-scheduled controller

  • Pasala, D.T.R.;Nagarajaiah, S.;Grigoriadis, K.M.
    • Smart Structures and Systems
    • /
    • v.9 no.4
    • /
    • pp.373-392
    • /
    • 2012
  • Tracking control of systems with variable stiffness hysteresis using a gain-scheduled (GS) controller is developed in this paper. Variable stiffness hysteretic system is represented as quasi linear parameter dependent system with known bounds on parameters. Assuming that the parameters can be measured or estimated in real-time, a GS controller that ensures the performance and the stability of the closed-loop system over the entire range of parameter variation is designed. The proposed method is implemented on a spring-mass system which consists of a semi-active independently variable stiffness (SAIVS) device that exhibits hysteresis and precisely controllable stiffness change in real-time. The SAIVS system with variable stiffness hysteresis is represented as quasi linear parameter varying (LPV) system with two parameters: linear time-varying stiffness (parameter with slow variation rate) and stiffness of the friction-hysteresis (parameter with high variation rate). The proposed LPV-GS controller can accommodate both slow and fast varying parameter, which was not possible with the controllers proposed in the prior studies. Effectiveness of the proposed controller is demonstrated by comparing the results with a fixed robust $\mathcal{H}_{\infty}$ controller that assumes the parameter variation as an uncertainty. Superior performance of the LPV-GS over the robust $\mathcal{H}_{\infty}$ controller is demonstrated for varying stiffness hysteresis of SAIVS device and for different ranges of tracking displacements. The LPV-GS controller is capable of adapting to any parameter changes whereas the $\mathcal{H}_{\infty}$ controller is effective only when the system parameters are in the vicinity of the nominal plant parameters for which the controller is designed. The robust $\mathcal{H}_{\infty}$ controller becomes unstable under large parameter variations but the LPV-GS will ensure stability and guarantee the desired closed-loop performance.

Elimination of Lancet-Related Needlestick Injuries Using a Safety-Engineered Lancet: Experience in a Hospital

  • An, Hye-sun;Ko, Suhui;Bang, Ji Hwan;Park, Sang-Won
    • Infection and chemotherapy
    • /
    • v.50 no.4
    • /
    • pp.319-327
    • /
    • 2018
  • Background: Lancet-related needlestick injuries (NSIs) occur steadily in clinical practices. Safety-engineered devices (SEDs) can systematically reduce NSIs. However, the use of SEDs is not active and no study to guide the implementation of SEDs was known in South Korea. The lancet-related NSIs may be eliminated to zero incidence using a SED lancet with effective sharp injury protection and reuse prevention features. Materials and Methods: We implemented a SED lancet by replacing a conventional prick lancet in a tertiary hospital in a sequential approach. A spot test of the new SED was conducted for 1 month to check the acceptability in practice and a questionnaire survey was obtained from the healthcare workers (HCWs). A pilot implementation of the SED lancet in 2 wards was made for 1 year. Based on these preliminary interventions, a hospital-wide full implementation of the SED lancet was launched. The incidence of NSIs and cost expenditure before and after the intervention were compared. Results: There were 29 cases of conventional prick lancet-related NSIs for 3 years before the full implementation of SED lancet. The proportion of prick lancet-related NSIs among yearly all kinds of NSIs during two years before the pilot study was average 11.7% (22/188). Pre-interventional baseline incidence of all kinds of NSIs was 7.01 per 100 HCW-years. After the full implementation of SED lancet, the lancet-related NSIs became zero in the 2nd year (P = 0.001). The average direct cost of 18,393 US dollars (USD) per year from device and post-exposure medical care before the intervention rose to 20,701 USD in the 2nd year of the intervention. The incremental cost-effectiveness ratio was 210 USD per injury avoided. Conclusion: The implementation of a SED lancet could eliminate the lancet-related NSIs to zero incidence. The cost increase incurred by the use of SED lancet was tolerable.

Power Compensator Control for Improving Unbalanced Power of AC Electric Railway (교류전기철도 불평형 전력 개선을 위한 전력보상장치 제어)

  • Woo, Jehun;Jo, Jongmin;Lee, Tae-Hoon;Cha, Hanju
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.3
    • /
    • pp.213-218
    • /
    • 2020
  • In this study, we propose a control algorithm to reduce the unbalanced characteristics of a three-phase system power caused by the unbalanced load of the AC electric railway. Then, we verify its performance through the design of a power compensator and experiments applying it. Like electric railway systems, a Scott transformer is applied, and the load and single-phase back-to-back converters are connected to the M-phase and T-phase outputs. The back-to-back converter monitors the difference in active power between the unbalanced loads in real-time and compensates for the power by using bidirectional characteristics. The active power is performed through PI control in the synchronous coordinate system, and DC link overall voltage and voltage balancing control are controlled jointly by M-phase and T-phase converters to improve the responsiveness of the system. To verify the performance of the proposed power compensation device, an experiment was performed under the condition that M-phase 5 kW and T-phase 1 kW unbalanced load. As a result of the experiment, the unbalance rate of the three-phase current after the operation of the power compensator decreases by 58.66% from 65.04% to 6.38%, and the excellent performance of the power compensator proposed in this study is verified.

Development and Verification of Active Vibration Control System for Helicopter (소형민수헬기 능동진동제어시스템 개발)

  • Kim, Nam-Jo;Kwak, Dong-Il;Kang, Woo-Ram;Hwang, Yoo-Sang;Kim, Do-Hyung;Kim, Chan-Dong;Lee, Ki-Jin;So, Hee-Soup
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.3
    • /
    • pp.181-192
    • /
    • 2022
  • Active vibration control system(AVCS) for helicopter enables to control the vibration generated from the main rotor and has the superb vibration reduction performance with low weight compared passive vibration reduction device. In this paper, FxLMS algorithm-based vibration control software of the light civil helicopter tansmits the control command calculated using the signals of the tachometer and accelerometers to the circular force generator(CFG) is developed and verified. According to the RTCA DO-178C/DO-331, the vibration control software is developed through the model based design technique, and real-time operation performance is evaluated in PILS(processor in-the loop simulation) and HILS(hardware in-the loop simulation) environments. In particular, the reliability of the software is improved through the LDRA-based verification coverage in the PIL environments. In order to AVCS to light civil helicopter(LCH), the dynamic response characteristic model is obtained through the ground/flight tests. AVCS configuration which exhibits the optimal performance is determined using system optimization analysis and flight test and obtain STC certification.

Multicore Flow Processor with Wire-Speed Flow Admission Control

  • Doo, Kyeong-Hwan;Yoon, Bin-Yeong;Lee, Bhum-Cheol;Lee, Soon-Seok;Han, Man Soo;Kim, Whan-Woo
    • ETRI Journal
    • /
    • v.34 no.6
    • /
    • pp.827-837
    • /
    • 2012
  • We propose a flow admission control (FAC) for setting up a wire-speed connection for new flows based on their negotiated bandwidth. It also terminates a flow that does not have a packet transmitted within a certain period determined by the users. The FAC can be used to provide a reliable transmission of user datagram and transmission control protocol applications. If the period of flows can be set to a short time period, we can monitor active flows that carry a packet over networks during the flow period. Such powerful flow management can also be applied to security systems to detect a denial-of-service attack. We implement a network processor called a flow management network processor (FMNP), which is the second generation of the device that supports FAC. It has forty reduced instruction set computer core processors optimized for packet processing. It is fabricated in 65-nm CMOS technology and has a 40-Gbps process performance. We prove that a flow router equipped with an FMNP is better than legacy systems in terms of throughput and packet loss.

Drive-train Jerk Reduction Control for Parallel Hybrid Electric Vehicles (병렬형 하이브리드 전기자동차 구동계의 Jerk 저감 제어)

  • Park, Joon-Young;Sim, Hyun-Sung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.1
    • /
    • pp.17-24
    • /
    • 2011
  • TMED(Transmission Mounted Electric Device) parallel hybrid configuration can realize EV(Electric Vehicle) mode by disengaging the clutch between an engine and a transmission-mounted motor to improve efficiencies of low load driving and regenerative braking. In the EV mode, however, jerk can be induced since there are insufficient damping elements in the drive-train. Though the jerk gives demoralizing influence upon driving comport, adding a physical damper is not applicable due to constraints of the layout. This study suggests the jerk reduction control, composed of active damping method and torque profiling method, to suppress the jerk without hardware modification. The former method creates a virtual damper by generating absorbing torque in the opposite direction of the oscillation. The latter method reduces impulse on the mated gear teeth of the drive-train by limiting the gradient of traction torque when the direction of the torque is reversed. To validate the effectiveness of the suggested strategy, a series of vehicle tests are carried out and it is observed that the amplitude of the oscillation can be reduced by up to 83%.