이 논문은 입술의 형태를 효과적으로 인식하는 방법을 제안하였다. 입술은 PDM(Point Distribution Model)을 기반으로 점들의 집합으로 표현하였다. 주성분 분석법을 적용하여 입술 모델을 구하고 모델에서 사용하는 형태계수의 분포를 GMM(Gaussian Mixture Model)을 이용하여 구하였다. 이 과정에서 계수를 정하기 위하여 EM(Expectation Maximization) 알고리듬을 사용하였다. 입술 경계선 모델은 입술을 구성하는 각 점과 주변 영역에서의 화소간 변화를 이용하여 구성하였으며 입술 탐색시 사용되었다. 여러 영상을 대상으로 실험한 결과 좋은 결과를 얻었다.
영상분할 결과는 알고리즘에 관련된 매개변수들에 따라 다르기 때문에 최적 분할을 위하여 시행 착오법이 많이 이용된다. 본 논문에서는 3차원 변량 분석법을 이용하여 영역기반 active contour 방법에 관련된 최적 매개변수들을 결정하는 방법을 제안한다. 3원 변량 분석법에 의해서 추출된 결과와 사용자가 영상에서 직접 그린 결과가 상호 비교된다. 마지막으로 각 매개변수들의 주요 효과와 상호작용 효과를 측정하고 최적 값을 추출하기 위하여 점 추정 및 구간 추정 값을 계산한다. 본 논문에서 제안한 방법은 구간 상수 모델을 대상으로 영상분할시 최적 매개변수들을 추출하는데 큰 도움을 줄 것이다.
본 논문에서는 분산환경에서 사용자들에게 효과적인 접근성과 사용성을 제공하는 코바기반 협업 지일 의료영상 분석 덴 가시화 시스템을 소개한다. 개발된 시스템은 분산환경에서 의료영상 분활 및 모델링과 같은 의료영상 분석 및 처리 기능을 제공하며 아울러 의료영상 데이터의 효율적 관리 기능을 제공한다. 영상의 분류 및 특정 세포조직의 추출은 베이지안 방법과 활성 윤곽선 모델등 적용하여 수행되며, 획득된 영상의 특성정보는 의료영상의 실시간 3차원 모델링에 사용된다. 개발된 시스템은 브로드 케스팅과 동기화 메커니즘에 기반하여 시스템을 사용하는 다중 사용자들간의 협동작업을 지원한다. 본 시스템은 분산 프로그램을 지원하는 자바 및 코바에 의해 개발되었으며, 따라서 클라이언트는 분산 객체의 위치나 분산객체가 수행되는 운영체제에 관한 정보가 없이도 메소드 호출방법에 의해 서버 객체에 접근할 수 있다.
본 논문은 CCD 칼라 영상을 이용하여 얼굴을 인식할 수 있는 방법을 제안한다. YCbCr 컬러모델에서 피부색에 대한 색상 정보와 적응적인 피부범위 확장을 통하여 얼굴후보영역을 추출하였다. 추출된 얼굴후보영역을 이용하여 곡선전개 방식의 초기곡선으로 사용하여 얼굴영역을 정확히 추출하였다. 얼굴의 특징점을 추출하기 위하여 얼굴영역에서 칼라정보를 이용한 Eye Map과 Mouth Map을 이용하였다. Log-polar변환의 중심점을 얻기 위하여 검출된 얼굴의 특징점을 이용하였다. 특징벡터를 추출하기 위하여 DCT, 웨이브렛 변환을 통하여 추출한 계수들을 이용하였다. 제안된 방법의 타당성을 검토하기 위하여 BP 학습알고리즘을 사용하는 신경망에서 얼굴인식을 수행하였다. 실험결과, 제안한 방법이 입력영상의 회전, 크기변화에 대하여 기존의 방법에 비하여 강인한 인식결과를 얻을 수 있었다.
감시 및 로보트 분야 등에서 다양하게 사용되는 전방향(omnidirectional) 카메라 시스템은 넓은 시야각을 제공한다. 전방향 카메라의 사영모델과 외부변수를 추정하는 대부분의 기존 연구에서는 사전에 설정된 영상 간의 대응관계를 가정한다. 본 논문에서는 두 장의 전방향 영상으로부터 투영곡선을 자동으로 정합하여 카메라의 외부변수를 추정하는 새로운 알고리즘이 제안된다. 먼저 두 영상에서 대응되는 특징점으로부터 에피폴라 구속조건을 계산하여 초기 카메라 변수를 계산한다. 검출된 특징점과 투영곡선을 대상으로 능동적(active) 정합방법으로 대응관계를 결정한다. 최종 단계에서 대응 투영곡선을 구성하는 양 끝점의 에피폴라(epipolar) 평면과 3차원 벡터의 각도 오차를 최소화하는 카메라 변수를 추정한다. 합성영상과 어안렌즈(fisheye lens)로 취득된 실제 영상을 대상으로 제안된 알고리즘이 기존 방법에 비해 카메라의 외부변수를 정확하게 추정함을 확인하였다.
게이트 심근 SPECT 영상은 좌심실 구혈률(EF), 확장기말 부피(end-diastolic volume), 수축기말(end-systolic volume)부피 등의 지표로 심근의 기능을 평가하는데 널리 이용된다. 이러한 지표들을 구하기 위해서는 심근 안팎의 경계선을 추출해야 한다. 본 연구는 좌심실의 SPECT short-axis 영상에서 전처리 과정을 거친 영상을 Hough Transform을 이용하여 초기점 설정한 후 심실 내외벽의 경계선을 추출하기 위해 Williams 가 제안한 Active Contour Model(snakes)을 이용하여 심근의 경계선을 자동으로 추출하였다.
Snake 모델(active contour model)은 초기값을 설정해주면 자동으로 임의의 물체의 윤곽을 찾아내는 알고리즘으로 영상에서 특정 영역을 분할하여 할 때 많이 이용되고 있다. 본 논문에서는 칼라 영상에서 얼굴과 얼굴의 특징점을 찾는 방법으로 이 알고리즘을 적용한다. 특히, 주어진 영상의 RGB 값을 정규화(normalization) 해주는 전처리 과정을 통해 얼굴의 특징점 후보 영역을 얻어내는 초기 값을 설정해주어야 하는 과정을 생략해주고 보다 정확한 값을 얻을 수 있도록 구현한다. RGB 값을 이용한 정규화 과정을 적용한 방법과 적용하지 않은 방법을 구현한 결과를 비교해줌으로써, 정규화 과정을 거친 방법의 성능이 더 우수함을 보여준다.
Motion tracking and object segmentation are the most fundamental and critical problems in vision tasks suck as motion analysis. An active contour model, snake, was developed as a useful segmenting and tracking tool for rigid or non-rigid objects. Snake is designed no the basis of snake energies. Segmenting and tracking can be executed successfully by energy minimization. In this research, two new paradigms for segmentation and tracking are suggested. First, because the conventional method uses only intensity information, it is difficult to separate an object from its complex background. Therefore, a new energy and design schemes should be proposed for the better segmentation of objects. Second, conventional snake can be applied in situations where the change between images is small. If a fast moving object exists in successive images, conventional snake will not operate well because the moving object may have large differences in its position or shape, between successive images. Snakes's nodes may also fall into the local minima in their motion to the new positions of the target object in the succeeding image. For robust tracking, the condensation algorithm was adopted to control the parameters of the proposed snake model called "adaptive color snake model(SCSM)". The effectiveness of the ACSM is verified by appropriate simulations and experiments.
본 논문에서는 전처리 과정에서 원영상에 있는 잡음을 제거하기 위해 비등방성 필터를 적용하여 물체의 경계와 모양을 추출하기 위해 Osher와 Sethian이 제안한 레벨셋에 기초한 새로운 기하활성 모델을 제시한다. 처리과정에서 처리시간을 최소화하기 위하여 전체 영상에서가 아닌 경계 근처 이웃 픽셀에서만 계산을 수행하는 협대역 방법을 사용한다. 각 슬라이스들은 비등방 필터링을 통해 잡음을 제거하고 형태 추출된 결과영상을 3차원 데이터 셋으로 구성하여 볼륨 렌더링을 통해 2차원 평면에 잡음이 제거된 깨끗한 영상결과물을 얻을 수 있었다.
본 연구에서는 피로강도중 설계자의 입장에서 일차적으로 관심의 대상인 균열발생수명에 대하여 선박용 중형엔진의 크랭크축을 대상으로 피로강도평가를 수행하였다. 본 평가를 위하여 크랭크축에 대한 구조해석모델을 구성하고 작용하중을 선정하였고 구조해석을 통한 반복적 응답을 근거로 균열발생수명을 추정하였으며 이들의 수명분포상황을 제시하여 보았다. 균열발생수명의 추정에서 주로 사용되고 있는 몇가지 상관관계를 소개하고 이의 적용성에 대하여 언급하여 보았다. 본 해석을 위하여 PATRAN, NASTRAN 및 EMRC/NISA 등의 상용프로그램을 적극 활용하였다. 균열발생해석의 결과로서 아직 조선업계의 적용성이 활발치 못한 수명분포도를 제시하였으며 이로부터 일반구조해석에서의 응력분포도와 같은 방식으로 수명분포상황을 일목요연하게 파악할 수 있는 방법의 적용성을 타진하여 보았다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.