• Title/Summary/Keyword: active compounds

Search Result 1,563, Processing Time 0.034 seconds

Radical Scavenging Effect of Methanol Extracts from Seaweeds and Their Active Compounds (해조류 추출물 및 활성성분의 라디칼 소거능)

  • So, Mi Jung;Cho, Eun Ju
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.2 no.3
    • /
    • pp.187-191
    • /
    • 2007
  • The radical scavenging activity of methanol extracts of seaweeds and their active compounds, alginic acid, fucoidan and phloroglucinol, were investigated under in vitro. Among methanol extracts of seaweeds (sea mustard, sea tangle, seaweed papulosa, fusiforme, sea lettuce, purple laver and chlorella), seaweed papulosa and sea tangle showed strong scavenging activities of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical and hydroxyl radical (${\cdot}OH$). In addition, under in vitro, the scavenging activities on DPPH radical of alginic acid and fucoidan, which are active compounds of brown algae, and phloroglucinol, the active compound from Ecklonia species, were evaluated and compared. Fucoidan and phloroglucinol showed strong DPPH scavenging effect, in particular, phloroglucinol had strongest activity among the active compounds. On the other hand, alginic acid did not exert DPPH scavenging activity. From the present study, we could confirm the antioxidative activity of seaweeds and its active compounds.

  • PDF

Development of Transport Parameters affecting on the Removal of Micro Organic Compounds such as Disinfection By-Products and Pharmaceutically Active Compounds by Low-Pressure Nanofiltration

  • Oh, Jeong-Ik;Yamamoto, Kazuo
    • Environmental Engineering Research
    • /
    • v.14 no.2
    • /
    • pp.126-133
    • /
    • 2009
  • This study investigated the removal characteristics of various micro organic compounds by low-pressure nanofiltration membranes comprised of disinfection by products and pharmaceutically active compounds. The experimental removal of micro organic compounds by low-pressure nanofiltration membranes was compared with the transport model calculations, which consist of diffusion and convection terms including steric hindrance factor. The selected molecule from the disinfection byproducts and pharmaceutical active compounds showed a much lower removal than polysac-charides with a similar molecular size. However,the difference between model calculation and experimental removal of disinfection by-products and pharmaceutically active compounds could be corrected. The correlation of Ks with solute radius was further considered to clarity transport phenomena of micro organic solutes through nanofiltration membranes.

Flavor and Taste-Active Compounds in Blue Mussel Hydrolysate Produced by Protease

  • Cha, Yong-Jun;Kim, Hun;Jang, Sung-Min
    • Preventive Nutrition and Food Science
    • /
    • v.3 no.1
    • /
    • pp.15-21
    • /
    • 1998
  • Volatile flavor compounds in hydrolyzed blue mussel(HBM) produced by OptimaseTM APL-440, with untreated blue mussel(UBM) were compared. A total of 100 volatile compounds were detected in both HBM and YBM , consisting mainly of 25 aldehydes, 16 ketones, 17 alcohols, 8 nitrogen-containing compounds, 11 aromatic compounds, 8 terpenes, and 15 miscellaneous compounds. Levels of aromiatic compounds decreased after hydrolysis, whereas levels of 7 nitrogen-containing compounds increased. The compounds , 3-methylbutanal, (z)-4-heptenal, and (E,Z)-2-, 6-nonadienal , had the highest odor values in both samples. Total free amino acids in HBM were 21.89%(w/w) and increased by 3,4 times higher than UBM. glutamic acid and aspartic acid, having sour tastes, were the major taste-active compounds in HBM.

  • PDF

Characterization of Volatile Compounds in Low-Temperature and Long-Term Fermented Baechu Kimchi (묵은 배추김치의 휘발성 성분 특성)

  • Kim, Ji-Yun;Park, Eun-Young;Kim, Young-Suk
    • Journal of the Korean Society of Food Culture
    • /
    • v.21 no.3
    • /
    • pp.319-324
    • /
    • 2006
  • Volatile compounds in low-temperature and long-term fermented Baechu kimchi were extracted by high vacuum sublimation(HVS), and then analyzed by gas chromatography/mass spectrometry(GC-MS). A total of 62 compounds, including 7 sulfur-containing compounds, 8 terpenes, 5 esters, 8 acids, 15 alcohols, 2 nitrites, 2 ketones, 11 aliphatic hydrocarbons and 4 miscellaneous compounds, were found in low-temperature and long-term fermented Baechu kimchi. Among them, acetic acid and butanoic acid were quantitatively dominant. Aroma-active compounds were also determined by gas chromatography/olfactometry(GC-O) using aroma extract dilution analysis(AEDA). A total of 16 aroma-active compounds were detected by GC-O. Butanoic acid was the most potent aroma-active compound with the highest FD factor($Log_3FD$) followed by linalool, acetic acid, 2-vinyl-4H-1,3-dithin and 3-methyl-1-butanol. The major aroma-active compounds, such as acetic acid and butanoic acid, were related to sour and rancid or notes.

Identification of Characteristic Aroma-active Compounds from Burnt Beef Reaction Flavor Manufactured by Extrusion (압출성형에 의해 제조된 구운 쇠고기 반응향의 특징적인 향기성분 동정)

  • Kim, Ki-Won;Seo, Won-Ho;Baek, Hyung-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.5
    • /
    • pp.621-627
    • /
    • 2006
  • To characterize aroma properties of burnt beef reaction flavor manufactured by extrusion, volatile flavor compounds and aroma-active compounds were analyzed by simultaneous steam distillation and solvent extraction (SDE)-gas chromatography-mass spectrometry-olfactometry (GC-MS-O). Hydrolyzed vegetable protein (HVP) was successfully extruded with precursors (glucose, cystine, furaneol, thiamin, methionine, garlic powder, and lecithin) at $160^{\circ}C$, screw speed of 45 rpm, and feed rate of 38 kg/hr. Sixty eight volatile flavor compounds were found in burnt beef reaction flavor. The number of volatile flavor compounds decreased significantly when HVP was extruded either with furaneol-free precursors or without precursors. Twenty seven aroma-active compounds were detected in burnt beef reaction flavor. Of these, methional and 2-methyl-3-furanthiol were the most intense aroma-active compounds. It was suggested that furaneol played an important role in the formation of burnt beef reaction flavor.

Aroma Characteristics of Acai Berry (아사이베리의 향기성분 특성 연구)

  • Lim, Seung-Hee;Nam, Heesop;Baek, Hyung-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.48 no.2
    • /
    • pp.122-127
    • /
    • 2016
  • The objective of this study was to identify the volatile compounds and aroma-active compounds from acai berry (Euterpe oleracea). Volatiles were isolated by high vacuum distillation using solvent-assisted flavor evaporation (SAFE) and liquid-liquid continuous extraction (LLCE). To identify the characteristic aroma-active compounds of acai berry, gas chromatography-mass spectrometry-olfactometry was used. Aroma-active compounds were evaluated by aroma extract dilution analysis (AEDA). A total of 51 and 54 volatile compounds from acai berry were identified from SAFE and LLCE extracts, respectively. Alcohols were confirmed to be important volatile compounds in acai berry, as the major volatile compounds were 2-phenylethanol, (Z)-3-hexenol, and benzyl alcohol. ${\beta}-Damascenone$ (berry, rose), trans-linalool oxide (woody), (Z)-3-hexenol (grass), and 2-phenylethanol (rose, honey) were considered the aroma-active compounds in acai berry. The most intense aroma-active compound of acai berry was ${\beta}-damascenone$.

Studies on the synthesis of mannish bases of 2,2'-methylene bis(3,4,6-trichlorophenoxyacetic acid) and their antimicrobial activities (2,2'-methylene bis(3,4,6-trichlorophenoxyacetic acid)의 mannich bases합성및 항균작용에 관한 연구)

  • 김종호
    • YAKHAK HOEJI
    • /
    • v.16 no.2
    • /
    • pp.97-107
    • /
    • 1972
  • Thirty-three Mannich bases of 2,2'-methylene bis(3,4,6-trichlorophenoxyacetic acid) were synthesized as potential antimicrobial agents and tested against Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Trichophyton rubrum, Microsporum gypseum, Epidermophyton floccosum, Aspergillus niger and Aspergillus oryzae in vitro. It was found that: 1) Compounds 24 and 22 were active against Staphylococcus aureus and Bacillus subtilis at the concn. of 1 $\mu$g/ml respectively; 2) Compounds 9 and 29 were active against Trichophyton rubrum at the concn. of 2 $\mu$g/ml respectively; 3) Compouns 9 and 30 were active against Microsporum gypseum at the concn. of 2 $\mu$g/ml respectively; 4) Compounds 6,9,13,15,21,28,29,31,33 and 34 were active against Epidermophyton floccosum at the concn. of 1 $\mu$g/ml respectively; 5) Compounds 6,9,18 and 28 were active against Aspergillus niger and Aspergillus oryzae at the concn. of 1 $\mu$g/ml respectively.

  • PDF

Removal Characteristics of Endocrine Disrupting Compounds (EDCs), Pharmaceutically Active Compounds (PhACs) and Personal Care Products (PCPs) by NF Membrane (NF막을 이용한 EDCs, PhACs, PCPs 물질의 제거 특성 평가)

  • Jang, Hyuewon;Park, Chanhyuk;Hong, Seungkwan;Yoon, Yeomin;Jung, Jin-Young;Chung, Yun-Chul
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.3
    • /
    • pp.349-357
    • /
    • 2007
  • Reports of endocrine disrupting compounds (EDCs), pharmaceutically active compounds (PhACs), and personal care products (PCPs) have raised substantial concern in important potable drinking water quality issues. Our study investigates the removal of EDCs, PhACs, and PCPs of 10 compounds having different physico-chemical properties (e.g., molecular weight, and octanol-water partition coefficient ($K_{OW}$)) by nanofiltration (NF) membranes. The rejection of micropollutants by NF membranes ranged from 93.9% to 99.9% depending on solute characteristics. A batch adsorption experiments indicated that adsorption is an important mechanism for transport/removal of relatively hydrophobic compounds, and is related to the octanol-water partition coefficient values. The transport phenomenon associated with adsorption may also depend on solution water chemistry such as pH and ionic strength influencing the pKa value of compounds. In addition, it was visually seen that the retention was somewhat higher for the larger compounds based on their molecular weight. These results suggest that the NF membrane retains many organic compounds due to both hydrophobic adsorption and size exclusion mechanisms.

Aroma-Active Compounds in Omandungi (Styela plicata)-Doenjang (Soybean Paste) Stew (오만둥이 된장찌개의 Aroma-active 화합물)

  • Jeong, Eun-Jeong;Cho, Woo-Jin;Cha, Yong-Jun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.41 no.6
    • /
    • pp.414-418
    • /
    • 2008
  • Volatile compounds in Omangdungi (Styela plicata)-Doenjang (soybean paste) stew were analyzed using solvent-assisted flavor evaporation/gas chromatography/mass-selective detection/olfactometry (SAFE/GC/MSD/O) and aroma extract dilution analysis (AEDA). The GC/O analysis detected 37 volatile compounds, of which 32 were positively identified, and included 9 aldehydes, 5 alcohols, 4 aromatic hydrocarbons, 4 ketones, 3 esters, 3 N-containing compounds, 2 acids, 1 S-containing compound, and 1 furan. Nine aroma-active odorants ($\log_3FD{\geq}3.0$) in the sample included six compounds derived from Doenjang (3-methyl(thio)propanal, tetramethylpyrazine, 4-vinyl-2-methoxyphenol, 2-acetylpyrrole, butyric acid, and 2-methoxyphenol) and three compounds from Omangdungi (2-acetyl-2-thiazoline, 9-decanol, and 6-decenol). Three compounds derived from Omangdungi (9-decanol, 6-decenol, and 6-nonenol) were thought to enhance the seafood-like flavor of Omangdungi-Doenjang stew.

Biologically active compounds from natural and marine natural organisms with antituberculosis, antimalarial, leishmaniasis, trypanosomiasis, anthelmintic, antibacterial, antifungal, antiprotozoal, and antiviral activities

  • Asif, Mohammad
    • CELLMED
    • /
    • v.6 no.4
    • /
    • pp.22.1-22.19
    • /
    • 2016
  • The biologically active compounds derived from different natural organisms such as animals, plants, and microorganisms like algae, fungi, bacteria and merine organisms. These natural compounds possess diverse biological activities like anthelmintic, antibacterial, antifungal, antimalarial, antiprotozoal, antituberculosis, and antiviral activities. These biological active compounds were acted by variety of molecular targets and thus may potentially contribute to several pharmacological classes. The synthesis of natural products and their analogues provides effect of structural modifications on the parent compounds which may be useful in the discovery of potential new drug molecules with different biological activities. Natural organisms have developed complex chemical defense systems by repelling or killing predators, such as insects, microorganisms, animals etc. These defense systems have the ability to produce large numbers of diverse compounds which can be used as new drugs. Thus, research on natural products for novel therapeutic agents with broad spectrum activities and will continue to provide important new drug molecules.